Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 7.a + 4
=17 . b +3
= 23.c+11(a,b,c thuộc N )
nếu ta thêm vào 150 vào số đã cho thì ta lần lượt có :
A + 150 = 7.a +4 + 150
=7.a + 7.22= 7.(a + 22 )
= 17 .b +3 + 150 = 17.b +17.9 =17. (b+9)
=23.c + 11+150 23.c + 23.7 = 23.(c+7 )
Như vậy A+150 đều chia hết cho 7;17 ;23 nhưng 7;17;23laf các số nguyên tố cùng nhau
suy ra A+150 chia hết cho 7;17;23 = 2737
mà A+150 = 2737x (x=1;2;3;4;.......)
suy ra A=2737x -150 =2737x-2737+2587 =2737.(x-1 )+2587 = 2737x` +2587
Vì 2587 < 2737 nên 2587 la số dư trong phép chia số đã cho A là 2737
Gọi số đã cho là A, theo đề bài ta có :
A = 7 . a + 3 = 17 . b + 12 = 23 . c + 7
Mặt khác :
A + 39 = 7 . a + 3 + 39 = 17 . b + 12 + 39 = 23 . c + 7 + 39
= 7( a + 6 ) = 17( b + 3 ) = 23( c + 2 )
Như vậy A + 39 đồng thời chia hết cho 7; 17 và 23.
Nhưng 7; 17 và 23 đồng thời là ba số nguyên tố cùng nhau nên :
( A + 39 ) = 7 . 17 . 23 hay ( A + 39 ) = 2737
=> A + 39 = 2737 . k => A = 2737 . k - 39 = 2737( k -1 ) + 2698
Do 2698 < 2737 nên 2698 là số dư của phép chia số A cho 2737.
Gọi số cần tìm là a thì a+3 chia hết cho 7 và a+3 chia hết cho 9 nên a+3 chia hết cho 63 suy ra a chia cho 63 dư 60
Ta có:
+) a chia hết cho b được thương là q thì a = b.q
+) Nếu a chia cho b được thương là dư r thì a = b.q + r
=> a - r = b.q => a - r chia hết cho b
Hoặc a + (b - r) = bq + r + (b - r) => a + (b - r) = bq + b = b(q+1) => a + (b - r) chia hết cho b
Ví dụ: a chia cho 5 dư 2 => a - 2 chia hết cho 5 hoặc a + 3 chia hết cho 5
gọi số cần tìm là a
ta có :
a chia 5 dư 2 chia 7 dư 4 chia 9 dư 6
=>a+3 chia hết cho 5;7;9
Vì a chia 5 dư 2=>a-2 chia hết cho 5=>a-2+5 chia hết cho 5=>a+3 chia hết cho 5
a chia 7 dư 4 =>a-4 chia hết cho 7 =>a-4+7 chia hết cho 7=>a+3 chia hết cho 7
a chia 9 dư 6 =>a-6 chia hết cho 9=>a-6+9 chia hết cho 9=>a+3 chia hết cho 9
nên lấy a+3 để xét BC của 5;7;9
....
a + 3 chia hết cho 9 ; 7
=> a +3 là BC(7;9) ; BCNN (7;9) =7.9 =63
=> a + 3 thuộc B(63)
=> a +3 = 63k với k thuộc N*
=> a = 63k -3 = 63k - 63 + 63 -3
=> a = 63(k-1) + 60
=> a chí cho 63 dư 60