Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mảnh 1 bay chếch một góc \(60^o\) thì mảnh 2 bay với một góc \(90^o-60^o=30^o\)
Bảo toàn động lượng:
\(sin60^o=\dfrac{p_1}{p}\Rightarrow p_1=p\cdot sin60^o=mv\cdot sin60^o=\dfrac{m}{2}\cdot v_1\)
\(\Rightarrow v_1=v\sqrt{3}=500\sqrt{3}m\)/s
\(cos30^o=\dfrac{p_2}{p}\Rightarrow p_2=\dfrac{m}{2}\cdot v_2=p\cdot cos30^o=mv\cdot cos30^o\)
\(\Rightarrow v_2=v\sqrt{3}=500\sqrt{3}\)m/s
Vận tốc viên đạn trước khi nổ:
\(tan45^o=\dfrac{p}{p_1}=\dfrac{m\cdot v}{m_1\cdot v_1}=\dfrac{2v}{0,5\cdot400}\)
\(\Rightarrow v=100\)m/s
Bài 1 :
P1 =m1g => m1 = 1(kg)
P2 = m2g => m2 =1,5(kg)
Trước khi nổ, hai mảnh của quả lựu đạn đều chuyển động với vận tốc v0, nên hệ vật có tổng động lượng : \(p_0=\left(m_1+m_2\right)v_0\)
Theo đl bảo toàn động lượng : \(p=p_0\Leftrightarrow m_1v_1+m_2v_2=\left(m_1+m_2\right)v_0\)
=> \(v_1=\frac{\left(m_1+m_2\right)v_0-m_2v_2}{m_1}=\frac{\left(1+1,5\right).10-1,5.25}{1}=-12,5\left(m/s\right)\)
=> vận tốc v1 của mảnh nhỏ ngược hướng với vận tốc ban đầu v0 của quả lựu đạn.
Bài2;
Vận tốc mảnh nhỏ trước khi nổ là :
v02=\(v_1^2=2gh\)
=> v1 = \(\sqrt{v_0^2-2gh}=\sqrt{100^2-2.10.125}=50\sqrt{3}\left(m/s\right)\)
Theo định luật bảo toàn động lượng :
\(\overrightarrow{p}=\overrightarrow{p_1}+\overrightarrow{p_2}\)
p = mv = 5.50 =250(kg.m/s)
\(\left\{{}\begin{matrix}p_1=m_1v_1=2.50\sqrt{3}=100\sqrt{3}\left(kg.m/s\right)\\p_2=m_2v_2=3.v_2\left(kg.m/s\right)\end{matrix}\right.\)
+ Vì \(\overrightarrow{v_1}\perp\overrightarrow{v_2}\rightarrow\overrightarrow{p_1}\perp\overrightarrow{p_2}\)
=> p2 = \(\sqrt{p_1^2+p^2}=\sqrt{\left(100\sqrt{3}\right)^2+250^2}=50\sqrt{37}\left(kg.m/s\right)\)
=> v2= \(\frac{p_2}{m_2}=\frac{50\sqrt{37}}{3}\approx101,4m/s+sin\alpha=\frac{p_1}{p_2}=\frac{100\sqrt{3}}{50\sqrt{3}}\)
=> \(\alpha=34,72^o\)
Coi hệ trên là hệ kín, ta có áp dụng bảo toàn động lượng có: \(\overrightarrow{P}=\overrightarrow{P_1}+\overrightarrow{P_2}\)
\(\Rightarrow P_2^2=P_1^2+P^2\Leftrightarrow\left(m_2v_2\right)^2=\left(m_1v_1\right)^2+\left(\left(m_1+m_2\right)v\right)^2\)
\(\Leftrightarrow\left(20v_2\right)^2=\left(10.519\right)^2+\left(30.300\right)^2\)
\(\Rightarrow v_2=519,4615\) (m/s)
Ta có: \(P_1=10.519=5190N\) và \(P_2=20.519,4615=10389,23N\)
Vậy mảnh hai rơi xéo xuống một góc arcsin(5190/10389,23)\(\approx30^0\)so với phương ngang