Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Gọi \(k\) là tử của phân số đó \(\left(k\in Z\right)\)
Khi đó mẫu của phân số: \(k+7\)
Vậy phân số ta cần tìm có dạng: \(\dfrac{k}{k+7}\left(k\ne-7\right)\)
Nếu giảm tử số 1 đơn vị thì được một phân số mới bằng \(\dfrac{1}{3}\) nên ta có phương trình:
\(\dfrac{k-1}{k+7}=\dfrac{1}{3}\left(k\ne-7\right)\)
\(\Leftrightarrow\dfrac{3\left(k-1\right)}{3\left(k+7\right)}=\dfrac{k+7}{3\left(k+7\right)}\)
\(\Leftrightarrow3\left(k-1\right)=k+7\)
\(\Leftrightarrow3k-3=k+7\)
\(\Leftrightarrow3k-k=7+3\)
\(\Leftrightarrow2k=10\)
\(\Leftrightarrow k=5\left(tm\right)\)
Vậy phân số đó là \(\dfrac{k}{k+7}=\dfrac{5}{5+7}=\dfrac{5}{12}\)

Gọi tử số là x
Mẫu số sẽ là : x + 11 ( x khác -11)
Ta có phân số đó là: \(\frac{x}{x+11}\)
Bớt tử số 7 đơn vị và tăng mẫu số lên 4 đơn vị ta có: \(\frac{x-7}{x+15}\)( x khác -15)
Theo bài ra ta có phương trình: \(\frac{x-7}{x+15}=\frac{x+11}{x}\)( x khác 0; -11; -15)
<=> \(x\left(x-7\right)=\left(x+11\right)\left(x+15\right)\)
<=> \(x^2-7x=x^2+26x+165\)
<=> \(x=-5\)
Vậy phân số đó là: \(\frac{-5}{6}\)

Gọi tử số của phân số là a thì mẫu số sẽ là a+11 \(\Rightarrow\)phân só là \(\frac{a}{a+11}\)
Phân số sau khi thay đổi là \(\frac{a-7}{a+15}\)
Vì phân số sau khi thay đổi bằng nghịch đảo phân số đã cho \(\Rightarrow\frac{a-7}{a+15}=\frac{a+11}{a}\Rightarrow a^2-7a=a^2+26a+165\Rightarrow a=-5\)
Vậy phân số đã cho là \(\frac{-5}{6}\)

ta có:x/(x+5) là phân số càn tìm
x+3/(x+5-3)=7/6 =>6(x+3)=7(x+2)=>6x+18=7x+14=>x=4
vậy phân số cần tìm là 4/9

gọi tử của phân số cần tìm là x (x thuộc Z)
tử bé hơn mẫu 12 đơn vị nên mẫu là : x + 12
ta có phân số cần tìm là x/x+12
nếu bớt đi tử 9 đơn vị thì được p/s = 5/8 nên:
x-9/x+12 = 5/8
=> 8(x - 9) = (x + 12)5
=> 8x - 72 = 5x + 60
=> 8x - 5x = 60 + 72
=> 3x = 132
=> x = 44
Gọi tử số của phân số đang cần tìm là x ( x thuộc Z )
Tử số < mẫu số là 12 đơn vị nên mẫu số sẽ là : x + 12
Ta có phân số đang cần tìm là : \(\frac{x}{x+12}\)
Nếu mà bớt đi từ tử số 9 đơn vị thì ta được phân số = \(\frac{5}{8}\) nên :
\(\frac{x-9}{x+12}=\frac{5}{8}\)
\(\Rightarrow8.\left(x-9\right)=\left(x+12\right).5\)
\(\Rightarrow8x-72=5x+60\)
\(\Rightarrow8x-5x=72+60\)
\(\Rightarrow3x=132\)
\(\Rightarrow x=132:3\)
\(\Rightarrow x=44\)

Gọi z là tử của phân số
Khi đó mẫu của phân số là \(z-13\)
Phân số ta cần tìm có dạng: \(\dfrac{z}{z-13}\)
Nếu tăng tử lên 3 đơn vị và giảm mẫu đi 4 đơn vị thì được phân số bằng với phân số \(\dfrac{3}{5}\) nên ta có phương trình:
\(\dfrac{z+3}{z-13-4}=\dfrac{3}{5}\left(z\ne17\right)\)
\(\Leftrightarrow\dfrac{z+3}{z-17}=\dfrac{3}{5}\)
\(\Leftrightarrow\dfrac{5\left(z+3\right)}{5\left(z-17\right)}=\dfrac{3\left(z-17\right)}{5\left(z-17\right)}\)
\(\Leftrightarrow5z+15=3z-51\)
\(\Leftrightarrow5z-3z=-51-15\)
\(\Leftrightarrow2z=-66\)
\(\Leftrightarrow z=\dfrac{-66}{2}=-33\left(tm\right)\)
Vậy phân số ta cần tìm là: \(\dfrac{z}{z-13}=\dfrac{-33}{-33-13}=\dfrac{-33}{-46}=\dfrac{33}{46}\)
Hiệu số phần bằng nhau:
5-3=2(phần)
Nếu tăng tử số 3 đơn vị, giảm mẫu số 4 đơn vị được phân số mơi có mẫu số bẻ hơn tử số:
13 + (4+3)= 20 (đơn vị)
Tử số mới là:
20:2 x3=30
Tử số ban đầu là:
30-3=27
Mẫu số ban đầu là:
27-13=14
Phân số ban đầu là: 27/14

Gọi tử số của phân số ban đầu là x
Mẫu số của phân số ban đầu là x+13
Tử số của phân số mới là x+3
Mẫu số của phân số mới là x+13-4= x+9
Phân số mới là \(\frac{x+3}{x+9}\)
Theo bài ra ta có phương trình
\(\frac{x+3}{x+9}\)= \(\frac{3}{5}\)
bạn tự giả phương trình nhé thì sẽ được x=6
=> tử số của phân số ban đầu là 6
Mẫu số của phân số ban đầu là 6+13=19
Vậy phân số ban đầu là \(\frac{6}{19}\)

Gọi tử số của phấn số cần tìm là x thì mẫu số của phân số cần tìm là x+11. Phân số cần tìm là \(\frac{x}{x+11}\)( x là số nguyên khác -11)
Khi bớt tử số đi 7 đơn vị và tăng mẫu lên 4 đơn vị ta được phân số
\(\frac{x-7}{x+15}\)(x khác -15)
theo bài ra ta có phương trình \(\frac{x}{x+11}=\frac{x+15}{x-7}\)
giải phương trình và tìm được x=-5 ( thỏa mãn)
từ đó tìm được phấn số \(-\frac{5}{6}\)
Gọi phân số ban đầu là \(\dfrac{a}{b}\) (\(a;b\in Z;b\ne0\) )
Ta có: \(b-8=a\) (1)
\(\dfrac{a+3}{b-3}=\dfrac{5}{6}\)
\(\Rightarrow6a+18=5b-15\)
\(\Rightarrow33=5b-6a\)Thay \(b=a+8\) từ (1) thì:
33 = 5(a+8) - 6a \(\Rightarrow\)a = 7\(\Rightarrow b=15\)
Vậy phân số đó là\(\dfrac{7}{15}\)
Gọi mẫu số của phân số cần tìm là x, tử số của phân số cần tìm là x - 8 ( x \(\ne\) 0 )
Theo bài ta có pt:
\(\dfrac{x-8+3}{x-3}=\dfrac{5}{6}\)
\(\Leftrightarrow\dfrac{x-5}{x-3}=\dfrac{5}{6}\)
\(\Leftrightarrow5\left(x-3\right)=6\left(x-5\right)\)
\(\Leftrightarrow5x-15=6x-30\)
\(\Leftrightarrow-x=-15\)
\(\Leftrightarrow x=15\) ( thoả mãn )
Vậy phân số đó là