Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c. Trường hợp 1: bạn nam ngồi đầu. khi dó 2 bạn nam xếp vào 2 chỗ ( số ghế 1 và 3), nữ xếp nốt vào hai chỗ còn lại ( ghế số 2 và 4), số cách xếp là 2!.2!=4
Trường hợp 2: bnạ nữ ngồi đầu. Tương tự có 4 cách xếp . Vậy theo quy tắc cộng số phần tử của biến cố N là 4+4=8
Chọn C
b. đánh số ghế theo thứ tự 1,2,3,4. Hai bạn nam ngồi cạnh nhau ở vị trí ( 1 và 2) hoặc (2 và 3) hoặc (3 và 4). Nếu hai bạn nam đổi chỗ cho nhau( giữ nguyên chỗ hai bạn nữ) thì Ta có một cách xếp mới . vì vậy cần chọn phương án D
Eo ơi, đừng!! Tách ra đi bạn ơi, để thế này khủng bố mắt người đọc quá :(
Mà hình như mấy bài này có trong tập đề của thầy tui gởi nè :v
Chọn A
Ta đánh số các vị trí từ 1 đến 8.
Số phần tử không gian mẫu là
Gọi A là biến cố: “xếp được tám bạn thành hàng dọc thỏa mãn các điều kiện: đầu hàng và cuối hàng đều là nam và giữa hai bạn nam gần nhau có ít nhất một bạn nữ, đồng thời bạn Quân và bạn Lan không đứng cạnh nhau”.
TH1: Quân đứng vị trí 1 hoặc 8 => có 2 cách
Chọn một trong 3 bạn nam xếp vào vị trí 8 hoặc 1 còn lại => có 3 cách.
Xếp 2 bạn nam còn lại vào 2 trong 4 vị trí 3,4,5,6 mà 2 nam không đứng cạnh nhau
=> có 6 cách
Xếp vị trí bạn Lan có 3 cách.
Xếp 3 bạn nữ vào 3 vị trí còn lại có 3! cách.
=> TH này có: 2.3.6.3.3! = 648 cách
TH2: Chọn 2 bạn nam ( khác Quân) đứng vào 2 vị trí 1 hoặc 8 có A 3 2 cách.
Xếp Quân và bạn nam còn lại vào 2 trong 4 vị trí 3,4,5,6 mà 2 nam không đứng cạnh nhau => có 6 cách
Xếp vị trí bạn Lan có 2 cách.
Xếp 3 bạn nữ vào 3 vị trí còn lại có 3! cách.
=> TH này có:
Vậy xác suất của biến cố A là
a.
Xếp 4 bạn nữ cạnh nhau: \(4!\) cách
Coi 4 bạn nữ là 1 bạn, xếp với 6 bạn nam: \(7!\) cách
Theo quy tắc nhân ta có: \(4!.7!\) cách
b.
Xếp 6 bạn nam: \(6!\) cách
6 bạn nam tạo thành 7 khe trống, xếp 4 nữ vào 7 khe trống này: \(C_7^4\) cách
\(\Rightarrow6!.C_7^4\) cách
c. Do có 6 nam và 4 nữ nên ko thể tồn tại cách xếp xen kẽ nam nữ (luôn có ít nhất 2 nam đứng cạnh nhau)
d.
Xếp 4 nữ cạnh nhau: \(4!\) cách
Xếp 6 nam cạnh nhau: \(6!\) cách
Hoán vị nhóm nam và nữ: \(2!\) cách
\(\Rightarrow4!.6!.2!\) cách
Gọi X là biến cố " chia 20 bạn thành 4 nhóm A, B, C, D mỗi nhóm 5 bạn sao cho 5 bạn nữ thuộc cùng 1 nhóm"
Ta có \(\left|\Omega\right|=C^5_{20}C^5_{10}C^5_5\) cách chia các bạn nam vào 3 nhóm còn lại.
Do vai trò các nhóm như nhau, có \(4C^5_{20}C^5_{10}C^5_5\) cách chia các bạn vào các nhóm A, B, C,D trong đó 5 bạn nữ thuộc một nhóm
Xác suất cần tìm là \(P\left(X\right)=\frac{4}{C^5_{20}}=\frac{1}{3876}\)
a. Mỗi cách xắp sêp 4 bạn vào 4 chỗ ngồi là một hoán vị của 4 phần tử. Vì vậy số phần tử của không gian mẫu là 4! =24
Chọn B