Một nhạc cụ phát ra âm có tần số cơ bản ƒ0 thì hoạ âm bậc 4 của nó là
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 1 2015

Điểu chỉnh điện dung C của tụ thấy C = Cvà C = C2 thì có cùng giá trị hiệu dụng của tụ điện \(U_{C1} = U_{C2}\)

Khi đó để  \(U_{Cmax}\) thì \(C=C_0 = \frac{C_1+C_2}{2}\) 

Chọn đáp án.D.

19 tháng 1 2015

Câu hỏi này hay đấy, nhưng ai có thể giải thích rõ hơn đc không?

4 tháng 6 2016

 + Ban đầu M là vân tối thứ 3 nên: \(x_M=\left(2+\frac{1}{2}\right)\frac{\lambda D}{a}\left(1\right)\)
+ Khi giãm S1S2 một lượng \(\Delta\)a thì M là vân sáng bậc n nên: \(x_M=n\frac{\lambda D}{a-\Delta a}\left(2\right)\)
+ Khi tăng S1S2 một lượng \(\Delta\)a thì M là vân sáng bậc 3n nên: \(x_M=3n\frac{\lambda D}{a+\Delta a}\left(3\right)\)
+ (2) và (3) \(\Rightarrow k\frac{\lambda D}{a-\Delta a}=3k\frac{\lambda d}{a+\Delta a}\Rightarrow\Delta a=\frac{a}{2}\)
+ Khi tăng S1S2 một lượng 2\(\Delta\)a thì M là sáng bậc k nên: \(x_M=k\frac{\lambda D}{a+2\Delta a}=2,5\frac{\lambda D}{a}\left(4\right)\)
+ Từ (1) và (4) \(\Rightarrow\) k = 5. Vậy tại M lúc này là vân sáng bậc 5.

23 tháng 5 2017

Công suất tiêu thụ được tính theo công thức

$P = {I^2}r = \frac{{{U^2}r}}{{{r^2} + Z_L^2}}$

Khi mắc các nguồn điện xoay chiều lần lượt vào cuộn dây thì công suất tương ứng là

$\left\{ \begin{array}{l}{P_1} = \frac{{{U^2}r}}{{{r^2} + Z_L^2}}(1)\\{P_2} = \frac{{{{\left( {3U} \right)}^2}r}}{{{r^2} + {{\left( {1,5{Z_L}} \right)}^2}}}(2)\\{P_3} = \frac{{{{\left( {6U} \right)}^2}r}}{{{r^2} + {{\left( {2,25{Z_L}} \right)}^2}}}(3)\end{array} \right.$

Từ (1) và (2) ta có:

$\frac{{600}}{{120}} = \frac{{{P_2}}}{{{P_1}}} = \frac{{({r^2} + Z_L^2)}}{{{r^2} + 2,25Z_L^2}}$

Suy ra cảm kháng

ZL = $\frac{{4r}}{3}$

Từ (2) và (3) ta có

$\begin{array}{l}\frac{{{P_3}}}{{{P_1}}} = \frac{{36({r^2} + Z_L^2)}}{{{r^2} + {{\left( {2,25{Z_L}} \right)}^2}}}\\ \Rightarrow {P_3} = 120 \times \frac{{36\left( {{r^2} + {{\left( {\frac{{4r}}{3}} \right)}^2}} \right)}}{{{r^2} + {{\left( {2,25.\frac{{4r}}{3}} \right)}^2}}} = 1200(W) \end{array}$

20 tháng 3 2016

Cứ mỗi hạt nhân Pôlôni bị phân rã tạo thành 1 hạt nhân chì trong mẫu.

Số hạt nhân Pôlôni bị phân rã là \(\Delta N = N_0 2^{-\frac{t}{T}}.\)

Số hạt nhân Pônôni còn lại là \( N = N_0 2^{-\frac{t}{T}}.\)

Tại thời điểm t1 : \(\frac{\Delta N}{N } = \frac{1-2^{-\frac{t_1}{T}}}{2^{-\frac{t_1}{T}}}= \frac{1}{3}\)

=> \(3(1-2^{-\frac{t_1}{T}})= 2^{-\frac{t_1}{T}}\)

=> \(2^{-\frac{t_1}{T}}= 2^{-2}\)

=> \(t_1 = 2T\)

=> \(t_2 = 2T+276 = 552 \) (ngày)

=> \(\frac{t_2}{T}= \frac{552}{138}= 4.\)

Tại thời điểm t2 : \(\frac{\Delta N_1}{N_1 } = \frac{1-2^{-\frac{t_2}{T}}}{2^{-\frac{t_2}{T}}}= \frac{1-2^{-4}}{2^{-4}}= 15.\)

=> \(\frac{N_1}{\Delta N_1} = \frac{1}{15}.\)

21 tháng 3 2016

Hoc24h là nguyễn quang hưng 

O
ongtho
Giáo viên
21 tháng 9 2015

Hai nguồn ngược pha, cùng biên độ => \(\triangle\varphi = \pi\)

Biên độ tại điểm M là 

\( A_M = |2a\cos\pi(\frac{d_2-d_1}{\lambda}-\frac{\triangle\varphi}{2\pi})| = |2a\cos\frac{\pi}{2}| = 0.\)

26 tháng 5 2016

Do E và B biến thiên cùng pha nên, khi cảm ứng từ có độ lớn B0/2 thì điện trường E cũng có độ lớn E0/2.

Bài toán trở thành tính thời gian ngắn nhất để cường độ điện trường có độ lớn E0/2 đang tăng đến độ lớn E0/2.

E M N Eo Eo/2

Từ giản đồ véc tơ quay ta dễ dang tính được thời gian đó là t = T/3

Suy ra: \(t=\dfrac{5}{3}.10^{-7}\)s

23 tháng 8 2016

Ta có \lambda = \frac{9}{f} = 2
Và \frac{- S_1S_2}{\lambda } < k < \frac{ S_1S_2}{\lambda } (k \epsilon N) => có 9 điểm