Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: V(2)=9800000-2400000=7400000
=>V(2) có nghĩa là giá trị của 1 máy tính bảng sau khi sử dụng 2 năm
b: V(t)=5000000
=>9800000-1200000t=5000000
=>t=4
Đây là câu hỏi Máy tính cầm tay toán 9 nâng cao các bạn nhé! Đề này ở vòng tỉnh đấy!
Bài 1 :
Gọi giá tiền của một chiếc ti vi loại A là x (triệu đồng) và giá tiền của một chiếc máy giặt loại B là y (triệu đồng)
Do tổng giá của 2 mặt hàng là 25,425,4 triệu nên ta có
\(x+y=25,4\)
Giá tiền của ti vi loại A và máy giặt loại B sau khi giảm giá là 0,6x(triệu đồng) và 0,75y(triệu đồng).
Do khi đó tổng giá tiền là 16,77 triệu đồng nên ta có
\(0,6x+0,75y=16,77\)
Vậy ta có hệ
\(\hept{\begin{cases}x+y=25,4\\0,6x+0,75y=16,77\end{cases}}\)
Giải ra ta có
x=15,2 ; y=10,2
Vậy giá niêm yết của ti vi loại A là 15,2 triệu đồng.
Bài 2 :
Gọi quãng đường AB là x(km) và khoảng thời gian sau khi xe tải xuất phát là y(h).
Vậy thời gian đi của xe tải là \(\frac{x}{40}\left(h\right)\)thời gian đi dự kiến của xe 45 chỗ là \(\frac{x}{50}\left(h\right)\)
Do đó ta có
\(\frac{x}{40}=\frac{x}{50}+y\)
\(\Leftrightarrow\frac{x}{200}=y\)
\(\Leftrightarrow x=200y\)
Thời gian đi thực tế của xe 45 chỗ là
\(\frac{x}{2}:50+\frac{x}{2}:60=\frac{x}{100}+\frac{x}{120}=\frac{11x}{600}\left(h\right)\)
Mà khi đó xe 45 chỗ đến B trc xe tải \(41'=\frac{41}{60}\left(h\right)\) nên ta có
\(\frac{x}{40}=\frac{11x}{600}+y+\frac{41}{60}\)
\(\Leftrightarrow\frac{x}{150}=y+\frac{41}{60}\)
\(\Leftrightarrow2x=300y+205\)
\(\Leftrightarrow2x-300y=205\)
Vậy ta có hệ
\(\hept{\begin{cases}x=200y\\2x-300y=205\end{cases}}\)
Sử dụng phương pháp thế giải ra \(x=410\)
Vậy quãng đường AB dài 410(km).
Số tiền bán cho 1 chiếc máy tính xách tay trong 10 chiếc đầu tiên là:
\(5000000\cdot\left(1+30\%\right)=6500000\left(đồng\right)\)
Số tiền bán cho 1 chiếc máy tính xách tay trong 10 chiếc còn lại là:
\(6500000\left(1-15\%\right)=5525000\left(đồng\right)\)
Tổng số tiền thu được khi bán 10 chiếc máy tính xách tay đầu tiên là:
\(6500000\cdot10=65000000\left(đồng\right)\)
Tổng số tiền thu được khi bán 10 chiếc máy tính xách tay còn lại là:
\(5525000\cdot10=55250000\left(đồng\right)\)
Tổng số tiền thu được khi bán 20 chiếc máy tính xách tay là:
\(65000000+55250000=120250000\left(đồng\right)\)
Tổng số tiền vốn khi nhập 20 chiếc máy tính xách tay là:
\(5000000\cdot20=100000000\left(đồng\right)\)
Phần trăm lời được là:
\(\dfrac{120250000-100000000}{100000000}=0,2025=20,25\%\)
Năm đầu tiền lãi chị Lan phải trả cho ngân hàng là: 200. 0,1=20 triệu đồng
Năm thứ 2 tiền lãi chị Lan phải tra cho ngân hàng là: (200+20).0,1=22 ( triệu đồng)
Sau 2 năm chị Lan phải hoàn trả cho ngân hàng toàn bộ gốc và lãi là: 200+20+22=242 ( triệu đồng)=242 000 000 ( đồng)
Trung bình tiền lãi của một sản phẩm là: 160 000-120 000=40 000 ( đồng)
Sau hai năm chị Lan bán đc số sản phẩm là:
242 000 000 :40 000=6050 ( sản phẩm)
Câu 1:
\(A=\dfrac{2\sqrt{x}}{\sqrt{x}-3}-\dfrac{x+9\sqrt{x}}{x-9}\left(x\ge0;x\ne9\right)\)
\(=\dfrac{2\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-\dfrac{x+9\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{2x+6\sqrt{x}-x-9\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)\(=\dfrac{x-3\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)\(=\dfrac{\sqrt{x}}{\sqrt{x}+3}\)
Câu 2:
\(V\left(3\right)=12000000-1400000.3=7800000\)
Có: \(V\left(t\right)=6400000\) \(\Leftrightarrow12000000-1400000t=6400000\)
\(\Leftrightarrow t=4\) => Sau 4 năm thì gtri chiếc máy tính này còn 6400000 đ
b,\(\left\{{}\begin{matrix}2x+y=5\\mx+3y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+\dfrac{4-mx}{3}=5\\y=\dfrac{4-mx}{3}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\left(6-m\right)=11\left(1\right)\\y=\dfrac{4-mx}{3}\end{matrix}\right.\)
Xét \(m=6\) thay vào pt ta đc \(\left\{{}\begin{matrix}2x+y=5\\6x+3y=4\end{matrix}\right.\) (vô nghiệm)
\(\Rightarrow m\ne6\)
Từ (1) \(\Rightarrow x=\dfrac{11}{6-m}\)
\(\Rightarrow y=\dfrac{4-\dfrac{11m}{6-m}}{3}\)\(=\dfrac{24-15m}{3\left(6-m\right)}\)
\(xy>0\Leftrightarrow\dfrac{11}{6-m}.\dfrac{24-15m}{3\left(6-m\right)}>0\)
\(\Leftrightarrow\dfrac{11\left(24-15m\right)}{3\left(6-m\right)^2}>0\)
\(\Leftrightarrow24-15m>0\Leftrightarrow m< \dfrac{24}{15}\)
`A=(2sqrtx)/(sqrtx-3)-(x+9sqrtx)/(x-9)`
`đk:x>=0,x ne 9`
`A=(2x+6sqrtx)/(x-9)-(x+9sqrtx)/(x-9)`
`=(x-3sqrtx)/(x-9)`
`=sqrtx/(sqrtx+3)`