Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi vận tốc dự định đi của người đó là x (km/h) (x > 0)
Thời gian dự định đi của người đó là 36/x (h)
Thời gian người đó đi nửa quãng đường đầu là 18/x (h)
Nửa quãng đường sau người đó đi với vận tốc là x + 2 (km/h) và thời gian người đó đi là 18/(x+2) (h)
Vì nghỉ lại 30 phút nên thời gian đi từ lúc xuất phát đến khi tới B là 18 x + 1 2 + 18 x + 2
Do người đó đến B chậm hơn dự kiến 12 phút = 1/5h nên ta có phương trình:
Vậy vận tốc của người đi xe đạp trên đoạn đường cuối của đoạn AB là 12 km/h
Đáp án: A
A B 50km 2h 30p x km/h x+2 km/h
Đổi \(30p=\frac{1}{2}h\)
Gọi vận tốc dự định của người đó là x (km/h) (x > 0)
\(\Rightarrow\) thời gian dự định của người đó là : \(t_{dđ}=\frac{S_{AB}}{v_{dđ}}=\frac{50}{x}\) (h)
Quãng đường ng đó di chuyển được sau 2 giờ là : \(2x\) (km)
\(\Rightarrow\)Quãng đường còn lại là \(50-2x\) (km)
Người đó phải tăng vận tốc thêm 2km/h trên quãng đường còn lại để đến B đúng dự định nên ta có PT :
\(\frac{50}{x}=2+\frac{1}{2}+\frac{50-2x}{x+2}\)
\(\Leftrightarrow\frac{50}{x}=\frac{5}{2}+\frac{50-2x}{x+2}\)
\(\Leftrightarrow\frac{50}{x}=\frac{5x+10+100-4x}{2\left(x+2\right)}\Leftrightarrow\frac{50}{x}=\frac{x+110}{2x+4}\)
\(\Leftrightarrow x^2+110x-100x-200=0\)
\(\Leftrightarrow x^2+10x-200=0\)
\(\Leftrightarrow\left(x-10\right)\left(x+20\right)\Rightarrow\orbr{\begin{cases}x=10\\x=-20\left(l\right)\end{cases}}\)
Vậy vận tốc ban đầu của xe là 10 km/h
Quãng đường AB dài là:
60 x 2 = 120 (km)
Nếu người đó đi với vận tốc 40km/h thì cần thời gian là:
120: 40 = 3 giờ
Gọi vận tốc ban đầu của người đó là x(km/h)
(ĐIều kiện: x>0)
Thời gian dự kiến của người đó sẽ đi hết quãng đường là \(\dfrac{36}{x}\left(h\right)\)
Độ dài nửa quãng đường còn lại là: 36*1/2=18(km)
Thời gian đi nửa quãng đường đầu tiên là \(\dfrac{18}{x}\left(giờ\right)\)
vận tốc của người đó ở 18km còn lại là x+2(km/h)
Thời gian người đó đi hết 18km còn lại là \(\dfrac{18}{x+2}\left(h\right)\)
Theo đề, ta có phương trình:
\(\dfrac{18}{x}+\dfrac{18}{x+2}+\dfrac{3}{10}=\dfrac{36}{x}\)
=>\(\dfrac{18}{x+2}-\dfrac{18}{x}=-\dfrac{3}{10}\)
=>\(\dfrac{6}{x}-\dfrac{6}{x+2}=\dfrac{1}{10}\)
=>\(\dfrac{6x+12-6x}{x\left(x+2\right)}=\dfrac{1}{10}\)
=>\(\dfrac{12}{x\left(x+2\right)}=\dfrac{1}{10}\)
=>x(x+2)=120
=>\(x^2+2x-120=0\)
=>\(\left(x+12\right)\left(x-10\right)=0\)
=>\(\left[{}\begin{matrix}x+12=0\\x-10=0\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=-12\left(loại\right)\\x=10\left(nhận\right)\end{matrix}\right.\)
Vậy: Vận tốc ban đầu là 10km/h
Thời gian xe lăn bánh trên đường là \(\dfrac{36}{10}=3,6\left(giờ\right)\)
Gọi vận tốc của người đi xe đạp lúc đầu là x(x>0)
Thời gian dự định đi hết quãng đường AB là : \(\frac{30}{x}\left(h\right)\)
Thời gian người đó đi hết nửa quãng đường đầu là : \(\frac{15}{x}\left(h\right)\)
Thời gian người đó đi hết nửa quãng đường sau là : \(\frac{15}{x+2}\left(h\right)\)
15 phút=\(\frac{1}{4}\)h Ta có:
\(\frac{30}{x}=\frac{15}{x}+\frac{1}{4}+\frac{15}{x+2}\)
\(\Leftrightarrow\frac{15}{x}-\frac{15}{x+2}=\frac{1}{4}\)
\(\Leftrightarrow\frac{1}{x}-\frac{1}{x+2}=\frac{1}{60}\)
\(\Leftrightarrow\frac{2}{x\left(x+2\right)}=\frac{1}{60}\)
\(\Leftrightarrow x\left(x+2\right)=120\)
\(\Leftrightarrow\orbr{\begin{cases}x=-12\\x=10\end{cases}\Rightarrow x=10}\)
Quãng đường AB dài là:
60 x 2 = 120 (km)
Nếu người đó đi với vận tốc 40km/h thì cần thời gian là:
120: 40 = 3 giờ
gọi vận tốc bạn đầu là: x (km/h; x>0); thời gian đến B dự định: 36/x
=> vận tốc nửa đường cong lại: x+2
36:2=18 km. đổi: 18'=3/10 h
thời gian đi nửa S đầu: 18/x (h)
thời gian đi nửa S sau: 18/x+2
vì người đó đến B đúng với dự định nên ta có pt:
\(\frac{18}{x}+\frac{18}{x+2}+\frac{3}{10}=\frac{36}{x}\Leftrightarrow\frac{18x+36+18x-36x-72}{x\left(x+2\right)}=-\frac{3}{10}\Leftrightarrow-3x^2-6x+360=0\)
\(\Leftrightarrow x^2+2x-120=0\Leftrightarrow\left(x-10\right)\left(x+12\right)=0\)
=> x=10 (t/m đk) hoặc x=-12 (k t/m đk)
=> vận tốc dđ là: 10 km/h
Đổi: \(30'=\frac{1}{2}h\) và \(12'=\frac{1}{5}h\)
Gọi vận tốc ban đầu là: \(a\left(km/h\right)\)
\(\Rightarrow\)Vận tốc trên quãng đường cuối cùng là: \(a+2\left(km/h\right)\)
Thời gian dự định từ \(A\rightarrow B\) là: \(\frac{36}{a}\left(h\right)\)
Thời gian thực tế người đó đi được: \(\frac{18}{a}+\frac{1}{2}=\frac{18}{a+2}\)
Theo đề ta có pt sau: \(\frac{18}{a}+\frac{1}{2}+\frac{18}{a+2}-\frac{36}{a}=\frac{1}{5}\)(Quy đồng mẫu \(=a\left(a+2\right)\))
\(\Rightarrow\frac{18\left(a+2\right)}{a\left(a+2\right)}+\frac{\frac{1}{2}a\left(a+2\right)}{a\left(a+2\right)}+\frac{18a}{a\left(a+2\right)}-\frac{36\left(a+2\right)}{a\left(a+2\right)}=\frac{\frac{1}{5}a\left(a+2\right)}{a\left(a+2\right)}\)
\((*)\)Ta khử mẫu: \(\left[a\left(a+2\right)>0;\forall a>0\right]\)
\(\Rightarrow18a+36+0,5a^2+a+18a-36a-72=0,2a^2+0,4a\)
\(\Rightarrow0,3a^2+0.6a-36=0\)
\(\Delta=0,6^2-4.0,3.\left(-36\right)=43,56\)
\(\Rightarrow x_1=\frac{-0,6+\sqrt{\Delta}}{2.0,3}=10\)
\(\Rightarrow x_2=\frac{-0,6-\sqrt{\Delta}}{2.03}=-12\left(l\right)\)
Vậy vận tốc của người đi xe đạp trên đoạn đường cuối là: \(10+2=12km/h\)