Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Thời gian người đó đi là
t = 8 giờ 50 phút - 7 giờ 20 phút = 1 giờ 30 phút = 1,5 giờ
=> v = \(\frac{s}{t}=\frac{300}{1,5}=200\left(km/h\right)=55,6m/s\)
2) Đổi 6m/s = 21,6 km/h
Quãng đường xe đạp đi trước là
S1 = vxe đạp.t1 = 21,6.(10 - 8) = 43,2 km
Gọi thời gian đến điểm gặp nhau của 2 xe sau 10h là t (h)
Theo bài ra ta có :
S1 + vxe đạp.t = vxe máy.t
=> 43,2 + 21,6t = 36t
=> 14,4t = 43,2
=> t = 3 (h)
=> 2 xe gặp nhau lúc 10 giờ + 3 giờ = 13 giờ
Chỗ gặp nhau cách A :
S2 = vxe đạp.t2 = 21,6.(2 + 3) = 108 km
Bài 1: Tóm tắt
\(S_1=24km\)
\(V_1=12km\)/\(h\)
\(S_2=12km\)
\(V_2=45'=0,75h\)
_______________
a) \(t_1=?\)
b) \(V_{TB}\)
Giải
a) Thời gian người đó đạp xe trên quãng đường đầu là: \(t_1=\frac{S_1}{V_1}=\frac{24}{12}=2\left(h\right)\)
b) Ta có công thức tính vận tốc trung bình là: \(V=\frac{S_1+S_2+....+S_n}{t_1+t_2+t_3+....+t_n}\)
Vậy vận tốc trung bình của người đó trên quãng đường là:
\(V_{TB}=\frac{S_1+S_2}{t_1+t_2}=\frac{24+12}{2+0,75}\approx13\)(km/h)
Bài 2: Tóm tắt
\(S_1=600m=0,6km\)
\(t_1=2'=\frac{1}{30}\left(h\right)\)
\(S_2=10,8km\)
\(t_2=0,75h\)
_________________
a) \(V_1=?;V_2=?\)
b) \(S_{KC}=?\)
Giải
a) Vận tốc của người thứ nhất là: \(V_1=\frac{S_1}{t_1}=\frac{0,6}{\frac{1}{30}}=18\)(km/h)
Vận tốc của người thứ 2 là: \(V_2=\frac{S_2}{t_2}=\frac{10,8}{0,75}=14,4\) (km/h)
=> Người thứ nhất đi nhanh hơn người thứ 2.
b) Do đi cùng lúc => thời gian đi của 2 người là như nhau và vận tốc đã cho
=> Hai người cách nhau số km là: \(S-t\left(V_1+V_2\right)=S-\frac{1}{3}\left(18+14,4\right)=S-10,8\)
Theo đề thì còn cần phải dựa vào khoảng cách của 2 người khi 2 người bắt đầu đi nữa.
a) Thời gian người đó đạp xe trên quãng đường thứ nhất là :
24 : 12 = 2 (giờ)
b) Đổi : 45 phút = 0,75 giờ
=> Vận tốc trung bình của người đi xe đạp trên cả quãng đường là :
(S1 + S2) / (t1 + t2) = (12+24) / (2+0,75) = 13 (km/h)
a)Đặt a là quãng đường, b là thời gian
*Xét người thứ nhất:
Thời gian đi nữa quãng đường đầu:
\(\dfrac{a}{2}:10=\dfrac{a}{20}\)
thời gian đi nửa quãng đường còn lại:
\(\dfrac{a}{2}:15=\dfrac{a}{30}\)
Vận tốc trung bình:
\(v_{tb}=\dfrac{a}{\dfrac{a}{20}+\dfrac{a}{30}}=\dfrac{a}{\dfrac{5a}{60}}=\dfrac{60a}{5a}=12\)(km/h)
*Xét người thứ hai
Quãng đường đi với nửa thời gian đầu:
\(\dfrac{b}{2}.10=\dfrac{10b}{2}\)(1)
Quãng đường còn lại:
\(\dfrac{b}{2}.15=\dfrac{15b}{2}\)(2)
từ (1) và (2)
=> \(a=\dfrac{10b}{2}+\dfrac{15b}{2}=\dfrac{25b}{2}\)
Vận tốc trung bình:
\(v_{tb}=\dfrac{a}{b}=\dfrac{\dfrac{25b}{2}}{b}=\dfrac{25b}{2}.\dfrac{1}{b}=\dfrac{25}{2}=12,5\)(km/h)
Vậy người thứ hai đi đến B trước.
b)
Đổi 28 phút 48 giây=0,48 h
Quãng đường a là:
0,48 . 12,5= 6 (km)
Thời gian đi từ A đến B của người thứ nhất là:
\(\dfrac{6}{12}\)=0,5(h)
Vậy người thứ nhất đi từ A đến B mất 0.5 h
Đáp án:
- thời gian đi hết quãng đường trước khi sửa xe là
t1=4/10=0,4h
thời gian đi hết quãng đường sau khi sửa xe
t2=8/v2
vận tốc trung bình là:
vtb =s1+s2/t1+t2 <=> 6=4+8/0,4+8/v2
=>6(0,4 + 8/v2)=12
=> 9,6 = 48/v2
=>v2 = 5
\(15p=0,25h;20p=\dfrac{1}{3}h\)
Vận tốc tb quãng đường thứ nhất: \(v=s:t=5:0,25=20\)km/h
Quãng đường đi được trên quãng đường sau: \(s'=v'.t'=7,2.\dfrac{1}{3}=2,4km\)
Vận tốc tb trên cả 2 quãng đường: \(v=\dfrac{s+s'}{t+t'}=\dfrac{5+2,4}{0,25+\dfrac{1}{3}}\simeq12.7\)km/h
a. Vận tốc mà người đi xe máy đi trong 40 phút đầu là:
\(v_1=\dfrac{s_1}{t_1}=\dfrac{40}{\dfrac{40}{60}}=60\)(km/h)
b. Quãng đường người đó đi được ở 1 giờ tiếp theo là:
\(s_2=v_2t_2=10.1=10km\)
Thời gian người đó đi trong 6km cuối cùng là:
\(t_3=\dfrac{s_3}{v_3}=\dfrac{6}{12}=0,5h\)
Tổng thời gian người đó đi từ A đến B là:
\(t=t_1+t_2+t_3=40+1.60+0,5.60=130\) phút = 2 giờ 10 phút
Vậy nếu người đó khởi hành từ A lúc 7h thì lúc 9h10 phút người đó đến B
c.
Độ dài quãng đường người đó đi trong 1 giờ 10 phút là: \(S=s_1+s_2+s_3=40+10+\dfrac{10}{60}.12=52km\)
\(v_{tb}=\dfrac{S}{t_1+t_2+t_{3'}}=\dfrac{52}{\dfrac{40}{60}+1+\dfrac{10}{60}}=28,36\) km/h