Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi quãng đường AB là x ( x > 0 )
Theo bài ra ta có pt \(\dfrac{x}{9}-\dfrac{x+6}{12}=\dfrac{1}{3}\Rightarrow x=30\left(tmđk\right)\)
Gọi \(x\left(km/h\right)\) là vận tốc lúc đi \(\left(x>0\right)\)
Vận tốc lúc về là: \(x+3\left(km/h\right)\)
Thời gian đi là: \(\dfrac{33}{x}\left(h\right)\)
Thời gian về là: \(\dfrac{62}{x+3}\left(h\right)\)
Đổi: 1 giờ 30 phút = 1,5 giờ
Do thời gian đi nhiều hơn thời gian về 1 giờ 30 phút nên ta có:
\(\dfrac{33}{x}-\dfrac{62}{x+3}=1,5\)
\(\Leftrightarrow\dfrac{33\left(x+3\right)}{x\left(x+3\right)}-\dfrac{62x}{x\left(x+3\right)}=1,5\)
\(\Leftrightarrow\dfrac{33x+99-62x}{x\left(x+3\right)}=1,5\)
\(\Leftrightarrow\dfrac{99-29x}{x\left(x+3\right)}=1,5\)
\(\Leftrightarrow\dfrac{99-29x}{x\left(x+3\right)}=\dfrac{3}{2}\)
\(\Leftrightarrow3x^2+9x=198-58x\)
\(\Leftrightarrow3x^2+67x-198=0\)
\(\Leftrightarrow x\approx3\left(km/h\right)\left(tm\right)\)
Gọi vận tốc lúc đi là x
=>vận tốc lúc về là x+3
Theo đề, ta có: \(\dfrac{33}{x}-\dfrac{62}{x+3}=\dfrac{3}{2}\)
=>\(\dfrac{33x+99-62x}{x\left(x+3\right)}=\dfrac{3}{2}\)
=>3(x^2+3x)=2(-29x+99)
=>3x^2+6x+58x-198=0
=>3x^2+64x-198=0
=>\(\left[{}\begin{matrix}x\simeq2,74\left(nhận\right)\\x\simeq-24,07\left(loại\right)\end{matrix}\right.\)
Gọi độ dài quãng đường AB là x(km)(Điều kiện: x>0)
Vận tốc lúc về là: 10+2=12(km/h)
Thời gian đi từ A đến B là: \(\dfrac{x}{10}\left(h\right)\)
Thời gian đi từ B về A là: \(\dfrac{x}{12}\left(h\right)\)
Theo đề, ta có phương trình: \(\dfrac{x}{10}-\dfrac{x}{12}=\dfrac{3}{4}\)
\(\Leftrightarrow\dfrac{6x}{60}-\dfrac{5x}{60}=\dfrac{45}{60}\)
Suy ra: x=45(thỏa ĐK)
Vậy: AB=45km
BÀI 4:Gọi đọ dài quãng đường AB là x(km)(x>0)
Khi đó: Thời gian để người đi xe đạp điện đi hết x km là\(\frac{x}{25}\)(h)
Thời gian để người đi xe máy đi hết x km là \(\frac{x}{40}\)(h)
Theo đb có phương trình sau: \(\frac{x}{25}\)- 1 -\(\frac{x}{40}\)= \(\frac{1}{2}\)
Giải phương trình ta đc x=100 (tmđk)
Vậy độ dài quãng đường là 100km
BÀI 5:Gọi độ dài quãng đường cũ từ A đến B là x(km)(x>0)
Khi đó: Thời gian để đi x km là:\(\frac{x}{28}\)(h)
Con đường mới từ B về A là: x+5(km)
Thời gian đi x+5 km là: \(\frac{x+5}{35}\)(h)
Theo đb có phương trình sau:\(\frac{x}{28}\)- \(\frac{x+5}{35}\)= \(\frac{3}{4}\)
Giải phương trình ta đc x=125(tmđk)
Vậy quãng đương cũ từ A đến B là 125km
BÀI 6:Thời gian để xe máy đi hết quãng đường là : 9h30' - 6h = 3,5h
Thời gian để ô tô đi hết quãng đường là: 9h30' - (6h - 1h ) = 2,5h
Gọi vận tốc trung bình của xe máy là x(km/h)(x>0)
Khi đó vận tốc trung bình của ô tô là x+20 (km/h)
Theo đb có phương trình sau: 3,5x = 2,5(20 + x )
Giải phương trình ta đc: x= 50 (tmđk)
Vậy vận tốc trung bình của xe máy là 50km/h và quãng đường AB dài 3,5.50=175 km
BÀI 7:Gọi thời điểm người t2 đuổi kịp người t1 là x(h)(x>7h)
Khi đó: Thời gian người t1 đi đến khi người t2 đuổi kịp là x-7(h)
Thời gian người t2 đi đến khi đuổi kịp người t1 là x-8(h)
Theo đb có phương trình sau:(x - 7)30 = (x - 8)45
Giải phương trình ta đc x=10(tmđk)
Vậy lúc 10h thì người t2 đuổi kịp người t1 và cách A là 90km
BÀI 8:Gọi thời gian đi đoạn đương bằng là x(h)(0<x<3)
Khi đó thời gian để đi đoạn đường dốc là 3 - x (h)
Theo đb có phương trình sau:10x -15(3 - x)=5
Giải phương trình ta đc x=2(tmđk)
Vậy quãng đường AB dài 10.2 + 15.1 + 5 =40km
BÀI 9:Gọi thời gian từ lúc xe máy khởi hành đến lúc 2 xe gặp nhau là x(h)(x>0,3h)
Khi đó: Quãng đường xe máy đi đc là 40x(km)
Thời gian ô tô đi đến lúc gặp xe máy là x - 0,3 (h)
Quãng đường ô tô đi đc là 45(x - 0,3) (km)
Theo đb có phương trình sau: 40x + 45(x - 3) = 97
Giải phương trình ta đc x=1,3(tmđk)
Vậy hai xe gặp nhau sau 1h18' sau khi xe máy khởi hành
BÀI 10:Gọi độ dài quãng đường AB là x (km)(x>0)
Theo đb có phương trình sau: \(\frac{x}{48}\)= 1 + \(\frac{1}{6}\)+\(\frac{x-48}{48+6}\)
Giải phương trình ta đc x=120 (tmđk)
Vậy quãng đường AB dài 120 km