K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 6 2018

Giải thích: Đáp án C

Giả sử ở thời điểm t nào đó ta có như trên VTLG

Giả sử suất điện động xuất hiện trong khung dây có dạng 

Áp dụng công thức toán học 

Phương trình (2) được viết lại:

. Kết hợp với (1) ta có

27 tháng 1 2018

cho mình xin link bài tập dạng này với

16 tháng 5 2016

giải chi tiết nhé 

16 tháng 5 2016

Sóng cơ học

22 tháng 9 2015

em gửi nhầm bài. bài này hôm trước thầy trả lời r. ~~

Con lắc đơn gồm 1 dây kim loại nhẹ có đầu trên cố định, đầu dưới treo một vật nhỏ. chiều dài của dây treo là 20cmcon lắc dao động điều hòa với anpha0=0,15 rad. Con lắc dao động trong từ trường đều, vecto cảm ứng từ B vuônggóc với mặt phẳng dao động của con lắc. B= 0,5T, g=9,8 m/s2. Suất điện động cực đại xuất hiện trên dây kim loại là:A. 17 mV                        B. 21mV  ...
Đọc tiếp

Con lắc đơn gồm 1 dây kim loại nhẹ có đầu trên cố định, đầu dưới treo một vật nhỏ. chiều dài của dây treo là 20cm

con lắc dao động điều hòa với anpha0=0,15 rad. Con lắc dao động trong từ trường đều, vecto cảm ứng từ B vuông

góc với mặt phẳng dao động của con lắc. B= 0,5T, g=9,8 m/s2. Suất điện động cực đại xuất hiện trên dây kim loại là:

A. 17 mV                        B. 21mV                    C. 8,5 mV                         D. 10,5 mV

-trong sách giải có trình bày như này ạ: 

              Suất điện động trên dây kim loại:  e= Blvsin\(\alpha\)  với anpha (B,v) = 90 độ 

               vmax = \(\sqrt{gl}\alpha_0\) = 0,21 m/s 

               suy ra emax = Blvmax = 0,021 V

-em tham khảo trên mạng dạng bài tương tự thì thấy có ghi

      e=\(\frac{Bl^2w}{2}\)

     emax khi wmax            suy ra     wmax=\(\frac{v_{max}}{R}=\frac{\sqrt{2gl\left(1-cos\alpha_0\right)}}{l}\)      thay số tính ra e = 10,5 mV

Vậy cách làm nào mới đúng vậy thầy.

1
31 tháng 5 2016

Cách thứ 2 mới đúng em nhé. 

Cách 1 chỉ đúng khi dây kim loại chuyển động tịnh tiến, nhưng ở đây là dây kim loại quay quanh 1 đầu cố định.

Mình giải thích thêm về công thức trên như sau.

Ta có suất điện đọng tính bởi :

\(e=\dfrac{\Delta\phi}{\Delta t}=\dfrac{B.\Delta S}{\Delta t}=\dfrac{B.\Delta (\dfrac{\alpha}{2\pi}.\pi^2.l )}{\Delta t}=\dfrac{B.\Delta\alpha.l^{2}}{2.\Delta t}=\dfrac{B.l^{2}\omega}{2}\)

Với \(\Delta \alpha\) là góc quay trong thời gian \(\Delta t\) \(\Rightarrow \omega = \dfrac{\Delta \alpha}{\Delta t}\)

\(e_{max}\) khi \(\omega_{max}\), với  \(\omega_{max}=\dfrac{v_{max}}{R}=\dfrac{\sqrt{2gl(1-\cos\alpha)}}{l}\)

Thay vào trên ta tìm đc \(e_{max}\)

9 tháng 4 2015

Áp dụng: Hai dao động điều hòa x1 vuông pha với x2 thì \(\left(\frac{x_1}{x_{1max}}\right)^2+\left(\frac{x_2}{x_{2max}}\right)^2=1\)

Nên: Do uR vuông pha với u\(\Rightarrow\left(\frac{u_R}{U_{0R}}\right)^2+\left(\frac{u_L}{U_{0L}}\right)^2=1\)

Ở thời điểm t2: \(\left(\frac{0}{U_{0R}}\right)^2+\left(\frac{20}{U_{0L}}\right)^2=1\Rightarrow U_{0L}=20V\) , tương tự: \(U_{0C}=60V\)

Ở thời điểm t1: \(\left(\frac{15}{U_{0R}}\right)^2+\left(\frac{-10\sqrt{3}}{20}\right)^2=1\Rightarrow U_{0R}=30V\)

Vậy: \(U_0=\sqrt{U_{0R}^2+\left(U_{0L}-U_{0C}\right)^2}=\sqrt{30^2+\left(20-60\right)^2}=50V\)

\(\Rightarrow U=\frac{U_0}{\sqrt{2}}=25\sqrt{2}V\)

Em có thể xem thêm lý thuyết và bài tập tự luyện phần điện xoay chiều tại đây: http://edu.olm.vn/on-tap/vat-ly/chuyen-de.52/%C4%90i%E1%BB%87n-xoay-chi%E1%BB%81u

15 tháng 6 2016

undefined

Chọn C

15 tháng 6 2016

\(\leftrightarrow\frac{u^2_R}{\left(\frac{8}{5}\right)^2}+\frac{u^2_L}{\left(\frac{5}{2}\right)^2}=1\)

Điều kiện :

\(\begin{cases}u_R\le\frac{8}{5}\left(V\right)\\u_L\le\frac{5}{2}\left(V\right)\end{cases}\)

\(\Rightarrow U_{\text{oR}}=\frac{8}{5}\left(V\right);U_{0L}=\frac{5}{2}\left(V\right)\)

\(\Rightarrow\frac{R}{\omega L}=\frac{8}{5}.\frac{2}{5}=\frac{16}{25}\leftrightarrow L=\frac{25R}{16L}=\frac{1}{2\pi}\left(H\right)\)

Đáp án C

23 tháng 5 2017

Công suất tiêu thụ được tính theo công thức

$P = {I^2}r = \frac{{{U^2}r}}{{{r^2} + Z_L^2}}$

Khi mắc các nguồn điện xoay chiều lần lượt vào cuộn dây thì công suất tương ứng là

$\left\{ \begin{array}{l}{P_1} = \frac{{{U^2}r}}{{{r^2} + Z_L^2}}(1)\\{P_2} = \frac{{{{\left( {3U} \right)}^2}r}}{{{r^2} + {{\left( {1,5{Z_L}} \right)}^2}}}(2)\\{P_3} = \frac{{{{\left( {6U} \right)}^2}r}}{{{r^2} + {{\left( {2,25{Z_L}} \right)}^2}}}(3)\end{array} \right.$

Từ (1) và (2) ta có:

$\frac{{600}}{{120}} = \frac{{{P_2}}}{{{P_1}}} = \frac{{({r^2} + Z_L^2)}}{{{r^2} + 2,25Z_L^2}}$

Suy ra cảm kháng

ZL = $\frac{{4r}}{3}$

Từ (2) và (3) ta có

$\begin{array}{l}\frac{{{P_3}}}{{{P_1}}} = \frac{{36({r^2} + Z_L^2)}}{{{r^2} + {{\left( {2,25{Z_L}} \right)}^2}}}\\ \Rightarrow {P_3} = 120 \times \frac{{36\left( {{r^2} + {{\left( {\frac{{4r}}{3}} \right)}^2}} \right)}}{{{r^2} + {{\left( {2,25.\frac{{4r}}{3}} \right)}^2}}} = 1200(W) \end{array}$