Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cách thứ 2 mới đúng em nhé.
Cách 1 chỉ đúng khi dây kim loại chuyển động tịnh tiến, nhưng ở đây là dây kim loại quay quanh 1 đầu cố định.
Mình giải thích thêm về công thức trên như sau.
Ta có suất điện đọng tính bởi :
\(e=\dfrac{\Delta\phi}{\Delta t}=\dfrac{B.\Delta S}{\Delta t}=\dfrac{B.\Delta (\dfrac{\alpha}{2\pi}.\pi^2.l )}{\Delta t}=\dfrac{B.\Delta\alpha.l^{2}}{2.\Delta t}=\dfrac{B.l^{2}\omega}{2}\)
Với \(\Delta \alpha\) là góc quay trong thời gian \(\Delta t\) \(\Rightarrow \omega = \dfrac{\Delta \alpha}{\Delta t}\)
\(e_{max}\) khi \(\omega_{max}\), với \(\omega_{max}=\dfrac{v_{max}}{R}=\dfrac{\sqrt{2gl(1-\cos\alpha)}}{l}\)
Thay vào trên ta tìm đc \(e_{max}\)
Áp dụng: Hai dao động điều hòa x1 vuông pha với x2 thì \(\left(\frac{x_1}{x_{1max}}\right)^2+\left(\frac{x_2}{x_{2max}}\right)^2=1\)
Nên: Do uR vuông pha với uL \(\Rightarrow\left(\frac{u_R}{U_{0R}}\right)^2+\left(\frac{u_L}{U_{0L}}\right)^2=1\)
Ở thời điểm t2: \(\left(\frac{0}{U_{0R}}\right)^2+\left(\frac{20}{U_{0L}}\right)^2=1\Rightarrow U_{0L}=20V\) , tương tự: \(U_{0C}=60V\)
Ở thời điểm t1: \(\left(\frac{15}{U_{0R}}\right)^2+\left(\frac{-10\sqrt{3}}{20}\right)^2=1\Rightarrow U_{0R}=30V\)
Vậy: \(U_0=\sqrt{U_{0R}^2+\left(U_{0L}-U_{0C}\right)^2}=\sqrt{30^2+\left(20-60\right)^2}=50V\)
\(\Rightarrow U=\frac{U_0}{\sqrt{2}}=25\sqrt{2}V\)
Em có thể xem thêm lý thuyết và bài tập tự luyện phần điện xoay chiều tại đây: http://edu.olm.vn/on-tap/vat-ly/chuyen-de.52/%C4%90i%E1%BB%87n-xoay-chi%E1%BB%81u
\(\leftrightarrow\frac{u^2_R}{\left(\frac{8}{5}\right)^2}+\frac{u^2_L}{\left(\frac{5}{2}\right)^2}=1\)
Điều kiện :
\(\begin{cases}u_R\le\frac{8}{5}\left(V\right)\\u_L\le\frac{5}{2}\left(V\right)\end{cases}\)
\(\Rightarrow U_{\text{oR}}=\frac{8}{5}\left(V\right);U_{0L}=\frac{5}{2}\left(V\right)\)
\(\Rightarrow\frac{R}{\omega L}=\frac{8}{5}.\frac{2}{5}=\frac{16}{25}\leftrightarrow L=\frac{25R}{16L}=\frac{1}{2\pi}\left(H\right)\)
Đáp án C
Công suất tiêu thụ được tính theo công thức
$P = {I^2}r = \frac{{{U^2}r}}{{{r^2} + Z_L^2}}$
Khi mắc các nguồn điện xoay chiều lần lượt vào cuộn dây thì công suất tương ứng là
$\left\{ \begin{array}{l}{P_1} = \frac{{{U^2}r}}{{{r^2} + Z_L^2}}(1)\\{P_2} = \frac{{{{\left( {3U} \right)}^2}r}}{{{r^2} + {{\left( {1,5{Z_L}} \right)}^2}}}(2)\\{P_3} = \frac{{{{\left( {6U} \right)}^2}r}}{{{r^2} + {{\left( {2,25{Z_L}} \right)}^2}}}(3)\end{array} \right.$
Từ (1) và (2) ta có:
$\frac{{600}}{{120}} = \frac{{{P_2}}}{{{P_1}}} = \frac{{({r^2} + Z_L^2)}}{{{r^2} + 2,25Z_L^2}}$
Suy ra cảm kháng
ZL = $\frac{{4r}}{3}$
Từ (2) và (3) ta có
$\begin{array}{l}\frac{{{P_3}}}{{{P_1}}} = \frac{{36({r^2} + Z_L^2)}}{{{r^2} + {{\left( {2,25{Z_L}} \right)}^2}}}\\ \Rightarrow {P_3} = 120 \times \frac{{36\left( {{r^2} + {{\left( {\frac{{4r}}{3}} \right)}^2}} \right)}}{{{r^2} + {{\left( {2,25.\frac{{4r}}{3}} \right)}^2}}} = 1200(W) \end{array}$
Giải thích: Đáp án C
Giả sử ở thời điểm t nào đó ta có như trên VTLG
Giả sử suất điện động xuất hiện trong khung dây có dạng
Áp dụng công thức toán học
Phương trình (2) được viết lại:
. Kết hợp với (1) ta có