Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi chiều dài, chiều rộng lần lượt là a,b
Theo đề, ta có; a+b=125 và a/3+2b=125
=>a=75; b=50
gọi chiều dài thửa ruộng là x (m) ( x > 0 )
chiều rộng....................y (m) (y>0)
theo bài ra ta có hệ phương trình : \(\hept{\begin{cases}2x+2y=250\\\left(\frac{x}{3}+2y\right).2=250\end{cases}}\)
=> x = 75 , y = 50
Gọi chiều dài là a;chiều rộng là b (\(a,b\in N\)*; a<b)
Nửa chu vi thửa ruộng là:
250:2=125m
\(\Rightarrow a+b=125\left(1\right)\)
Nếu chiều dài giảm 3 lần và chiều rộng tăng 2 lần thì chu vi của thửa ruộng vẫn không đổi
\(\Rightarrow\left[\left(a-3\right)+\left(b+2\right)\right]\times2=\left(a+b\right)\times2\left(2\right)\)
Từ (1) và (2) ta có hệ... nhưng vô nghiệm ko bít tui sai hay đề sai :D
Bài 11:
Gọi x(m) và y(m) lần lượt là chiều dài và chiều rộng của mảnh đất(Điều kiện: x>0; y>0; \(x\ge y\))
Vì chu vi của mảnh đất là 90m nên ta có phương trình:
\(2\cdot\left(x+y\right)=90\)
\(\Leftrightarrow x+y=45\)(1)
Diện tích ban đầu của mảnh đất là: \(xy\left(m^2\right)\)
Vì khi giảm chiều dài đi 5m và giảm chiều rộng đi 2m thì diện tích giảm 140m2 nên ta có phương trình:
\(\left(x-5\right)\left(y-2\right)=xy-140\)
\(\Leftrightarrow xy-2x-5y+10-xy+140=0\)
\(\Leftrightarrow-2x-5y+150=0\)
\(\Leftrightarrow-2x-5y=-150\)
\(\Leftrightarrow2x+5y=150\)(2)
Từ (1) và (2) ta lập được hệ phương trình:
\(\left\{{}\begin{matrix}x+y=45\\2x+5y=150\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+2y=90\\2x+5y=150\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-3y=-60\\x+y=45\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=20\\x=45-y=45-20=25\end{matrix}\right.\)(thỏa ĐK)
Diện tích mảnh đất là:
\(x\cdot y=25\cdot20=500\left(m^2\right)\)
Vậy: Diện tích mảnh đất là 500m2
Bài 12:
Gọi x(m) và y(m) lần lượt là chiều dài và chiều rộng của mảnh đất(Điều kiện: x>0; y>0; \(x\ge y\))
Vì chu vi của mảnh đất là 80m nên ta có phương trình:
\(2\cdot\left(x+y\right)=80\)
\(\Leftrightarrow x+y=40\)(3)
Diện tích ban đầu của mảnh đất là:
\(xy\left(m^2\right)\)
Vì khi tăng chiều dài thêm 3m và tăng chiều rộng thêm 5m thì diện tích tăng thêm 195m2 nên ta có phương trình:
\(\left(x+3\right)\left(y+5\right)=xy+195\)
\(\Leftrightarrow xy+5x+3y+15-xy-195=0\)
\(\Leftrightarrow5x+3y-180=0\)
\(\Leftrightarrow5x+3y=180\)(4)
Từ (3) và (4) ta lập được hệ phương trình:
\(\left\{{}\begin{matrix}x+y=40\\5x+3y=180\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5x+5y=200\\5x+3y=180\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2y=20\\x+y=40\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=40-y=40-10=30\\y=10\end{matrix}\right.\)(thỏa ĐK)
Vậy: Chiều dài của mảnh đất là 30m
Chiều rộng của mảnh đất là 10m
Gọi c dài c rộng của mảnh vườn là x , y (m ) , ( x>Y>0)
Chu vi mảnh vườn là: 2 ( x+y ) = 34 (m)
Diện tích trước khi tăng là : xy(m2)
Giúp tôi giải toán
29/07/2015 lúc 21:30
Một mảnh vườn có chu vi là 34m. Nếu tăg chiều dài 3m ,chiều rộng giảm 2m thì diện tích tăng 45m2. Tính chiều dài, chiều rộng của mảnh vườn
Gọi c.dài , c.rộng mảnh vườn là x , y(m) ,(x>y>0)
Chu vi mảnh vườn là :2(x+y)=34 (m)
Diện tích trc khi tăng là : xy(m2)
Diện tích sau khi tăng là (x+3)(y+2) (m2)
Theo bài ra ta có ; 2(x+y)=34 và (x+3)(y+2)-xy=45
<=> 2x+2y=34 và 2x+3y=39
<=> x+y=17 và y=15
<=>x=12 và y =5
Vậy ...........
gọi AB,BC thứ tự là chiều dài và chiều rộng của hcn
diện tích hcn là:AB.BC
vì sau khi tăng chiều dài 5m, chiều rộng 3m thì S tăng thêm 255 m2 nên ta có phương trình
(AB+5).(BC+3)-AB.BC=255
<=>AB.BC+3.AB+5.BC+15-AB.BC=255
<=>3.AB+5.BC=240(1)
mà AB+BC=62=>3.AB+3.BC=186(2)
trừ cả 2 vế của (1) và (2) ta được
3.AB+5.BC-3.AB-3.BC=240-186
<=>2.BC=54<=>BC=27(m)
=>AB=35(m)
Vậy AB=35m,BC=27m
ặc. mình nhầm
nửa chu vi là: 250:2=125
gọi chiều dài là x (m;x>0)
chiều rộng là: 125-x(m)
=> chều dài thay đổi: x/3; chiều rộng thay đổi 2(125-x) (m)
vì chu vi k đổi nên ta có pt: \(\left(\frac{x}{3}+2\left(125-x\right)\right)2=250\Leftrightarrow\frac{-10}{3}x=-250\Leftrightarrow x=75\)( t/m đk)
=> dài: 75m. rộng: 125-75=50 m
gọi chiều dài là x (m;x>0)
chiều rộng là: 250-x(m)
=> chều dài thay đổi: x/3; chiều rộng thay đổi 2(250-x) (m)
chu vi: 250.2=500(m)
vì chu vi k đổi nên ta có pt: \(\frac{x}{3}+2\left(250-x\right)=500\Leftrightarrow\frac{-5}{3}x=0\Rightarrow x=0\)(k t/m đk)
=> k tìm đc x