Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài này thì có vẹo gì đâu bạn.
\(u=100\sqrt 2\cos(100\pi t)(V)\)
\(Z_L=\omega L = 10\Omega\)
\(Z_C=\dfrac{1}{\omega C}=20\Omega\)
Tổng trở \(Z=\sqrt{r^2+(Z_L-Z_C)^2}=10\sqrt 2 \Omega\)
\(\Rightarrow I_o=\dfrac{U_0}{Z}=10A\)
\(\tan\varphi=\dfrac{Z_L-Z_C}{R}=-1\Rightarrow \varphi=-\dfrac{\pi}{4}\)
Suy ra: \(\varphi=\dfrac{\pi}{4}\)
Vậy \(i=10\cos(100\pi t +\dfrac{\pi}{4})\) (A)
Có: \(L=CR^2=Cr^2\Rightarrow R^2=r^2=Z_LZ_C,URC=\sqrt{3U}_{Lr}\Leftrightarrow Z^2_{RC}=3Z^2_{Lr}\Leftrightarrow R^2+Z^2_C=3\left(Z^2_L+R^2\right)\)
\(\Leftrightarrow-3Z^2_L+Z^2_C=2R^2\) (*) \(R^2=Z_LZ_C\) (**)
Từ (*) và (**) có: \(Z_L=\frac{R}{\sqrt{3}};Z_C=\sqrt{3}R\Rightarrow Z=\sqrt{\left(R+r\right)^2Z^2_{LC}}=\frac{4R}{\sqrt{3}}\Rightarrow\cos\phi=\frac{R+r}{Z}=\frac{\sqrt{3}}{2}\approx0,866\)
A đúng
Bài giải:
Áp dụng công thức: \(Z_C\text{=40 Ω; Z_L}\text{= 10 Ω; Z = 50 Ω}\)
I = 2,4 A; tanφ =\(-\dfrac{3}{4}\) => φ ≈ \(-37^0\) ≈ -0,645 rad
a) i = 2,4√2cos(100πt - 0,645) (A).
B, \(U_{AM}=I\sqrt{R^2+Z^2_C}=\text{= 96√2 V}\)
Áp dụng các công thức: ZC = 40 Ω; ZL = 10 Ω; Z = 50 Ω
I = 2,4 A; tanφ = => φ ≈ -370 ≈ -0,645 rad
a) i = 2,4√2cos(100πt - 0,645) (A).
b) UAM = I = 96√2 V
Khi tăng điện dung nên 2.5 lần thì dung kháng giảm 2.5 lần. Cường độ dòng trễ pha hơn hiệu điện thế $\pi/4$ nên
$Z_L-\frac{Z_C}{2.5}=R$
Trường hợp đầu tiên thì thay đổi C để hiệu điện thế trên C cực đại thì $Z_LZ_C=R^2+Z_L^2$
$Z_LZ_C=(Z_L-\frac{Z_C}{2.5})^2+Z_L^2$
Giải phương trình bậc 2 ta được: $Z_C=\frac{5}{4}Z_L$ hoặc $Z_C=10Z_L$(loại vì Zl-Zc/2.5=R<0)
$R=\frac{Z_L}{2}$
Vẽ giản đồ vecto ta được $U$ vuông góc với $U_{RL}$ còn $U_C$ ứng với cạch huyền
Góc hợp bởi U và I bằng với góc hợp bởi $U_L$ và $U_{LR}$
$\tan\alpha=\frac{R}{Z_L}=0.5$
$\sin\alpha=1/\sqrt5$
$U=U_C\sin\alpha=100V$
\(U_{C}{max}=\frac{U\sqrt{R^{2}+Z_L^{2}}}{R}\); \(Zc=\frac{R^{2}+Z_L^{2}}{Z_L}\)
khi C2=2,5C1---->Zc2=Zc1/2,5=ZC/2,5
do i trể pha hơn U nên Zl>Zc/2,5
\(\tan\frac{\pi }{4}=\frac{Z_L-0,4Zc}{R}=1\Rightarrow R=Z_L-0,4Z_C\)
\(\Rightarrow Z_C.Z_L=Z_L^{2}+(Z_L-0,4Z_C)^{2}\Rightarrow 2Z_L^{2}-1,8Z_CZ_L+0,16Z_C^{2}=0\Rightarrow Z_L=0,8Z_C;Z_L=0,1Z_C\)(loai)
\(\Rightarrow R=Z_L-1,25.0,4Z_L=0,5Z_L\)
\(\Rightarrow U_{C}{max}=\frac{U\sqrt{Z_L^{2}+0,25Z_L^{2}}}{0,5Z_L}=100\sqrt{5}\Rightarrow U=100V\)
Khi L thay đổi thì: URmax và UCmax \(\leftrightarrow\) cộng hưởng \(\leftrightarrow\) \(\begin{cases}I_{max}=\frac{U}{R}\rightarrow\begin{cases}U_{Rmax}=U\\U_{Cmax}=I_{max}.Z_C=\frac{U}{R}.Z_C\end{cases}\\U_{Lmax}=\frac{U\sqrt{R^2+Z^2_C}}{R}\end{cases}\)
Theo đề bài: \(U_{Lmax}=2U_{Rmax}\) hay
\(\begin{cases}\frac{U\sqrt{R^2+Z^2_C}}{R}=2U\rightarrow Z_C=R\sqrt{3}\\\frac{U_{Lmax}}{U_{Cmax}}=\frac{\frac{U\sqrt{R^2+Z^2_C}}{R}}{\frac{U}{R}.Z_C}=\frac{\sqrt{R^2+Z^2_C}}{Z_C}\end{cases}\)\(\rightarrow\frac{U_{Lmax}}{U_{Cmax}}=\frac{\sqrt{R^2+\left(R\sqrt{3}\right)^2}}{R\sqrt{3}}=2\sqrt{3}\)
chọn D
Bài này quá là đơn giản :D
Điện áp hiệu dụng của mạch: \(U=\sqrt{50^2+(40-90)^2}=50\sqrt 2V\)
Do điện áp trên R, L, C tỉ lệ thuận với trở kháng của nó, nên ta coi:
\(R=5.k\)
\(Z_L=4k\)
\(Z_C=9k\)
(k là hệ số tỉ lệ)
Khi R tăng gấp đôi thì: \(R'=10k\)
Tổng trở: \(Z'=\sqrt{(10k)^2+(4k-9ki)^2}=5\sqrt5k\)
\(\Rightarrow U_{R'}=I.R'=\dfrac{U}{Z'}.R'=\dfrac{50\sqrt 2}{5\sqrt 5k}.10k=20\sqrt{ 10}V\)
@Minh Giang thấy đúng thì like và share để động viên bạn nhé
Đáp án D
+ Tần số của của dao động điện