K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 9 2017

22 tháng 1 2019

25 tháng 4 2019

10 tháng 6 2016

Tần số: \(f=\dfrac{1}{2\pi\sqrt {LC}}\Rightarrow f^2=\dfrac{a}{C}\) (a là 1 hằng số nào đó, do bài này f chỉ phụ thuộc vào C)

\(\Rightarrow f_1^2=\dfrac{a}{C_1}\)

\(f_2^2=\dfrac{a}{C_2}\)

Cần tìm: \(\Rightarrow f^2=\dfrac{a}{C}=a.(\dfrac{1}{C_1}+\dfrac{1}{C_2})=f_1^2+f_2^2\)

\(\Rightarrow f=\sqrt{30^2+40^2}=50(Hz)\)

25 tháng 2 2016

Khi tăng điện dung nên 2,5 lần thì dung kháng giảm 2,5 lần. Cường độ dòng trễ pha hơn hiệu điện thế \(\pi\text{/}4\) nên

 

\(Z_L-\frac{Z_C}{2,5}=R\)

 

Trường hợp đầu tiên thì thay đổi C để hiệu điện thế trên C cực đại thì

 

\(Z_LZ_C=R^2+Z^2_L\)

 

\(Z_LZ_C=\left(Z_L-\frac{Z_C}{2,5}\right)^2+Z^2_L\)

 

Giải phương trình bậc 2 ta được

\(Z_C=\frac{5}{4}Z_L\) hoặc \(Z_C=10Z_L\) (loại vì Zl-Zc/2.5=R<0)

\(R=\frac{Z_L}{2}\)

 

Vẽ giản đồ vecto ta được \(U\) vuông góc với \(U_{RL}\) còn \(U_C\) ứng với cạch huyền

 

Góc hợp bởi U và I bằng với góc hợp bởi \(U_L\) và \(U_{LR}\)

 

\(\tan\alpha=\frac{R}{Z_L}=0,5\)

 

\(\sin\alpha=1\text{/}\sqrt{5}\)

 

\(U=U_C\sin\alpha=100V\)

 

\(U_o=U\sqrt{2}=100\sqrt{2}V\)

chọn C

25 tháng 2 2016

A

15 tháng 2 2016

\(U_{RC}=const=U\) khi \(Z_{L1}=2Z_C=R\)

Mặt khác L thay đổi để :  \(U_{Lmax}:U_{Lmax}=\frac{U\sqrt{R^2+Z^2_C}}{R}=\frac{U\sqrt{2^2+1}}{2}=\frac{U\sqrt{5}}{2}\)

\(\Rightarrow chọn.D\)

 

 

14 tháng 6 2016

+,có C=C1=>U_R=\frac{U.R}{\sqrt{R^2+(Zl-ZC1)^2}}
+,U R ko đổi =>Zl=ZC1
+,có c=C1/2=>ZC=2ZC1
=>U(AN)=U(RL)=\frac{U\sqrt{r^2+Z^2l}}{\sqrt{R^2+(Zl-2Z^2C1)}}=u=200V

25 tháng 1 2016

Từ ĐK đầu bài ta có: Zc^{2}=r^{2}+Zl^{2}=r^{2}+(Zl-Zc)^{2}\Rightarrow Zc=2Zl=100\Rightarrow \omega ^{2}=\frac{1}{2LC}
tần số dao động riwwng của mạch là:(80\Pi )^{2}=\frac{1}{L(C-\Delta C)}\Rightarrow L.C-L\Delta C=\frac{1}{80^{2}.10}\Rightarrow \frac{1}{2\omega^{2}}-\frac{50}{\omega }.\frac{0,125.10^{-3}}{\Pi }=\frac{1}{80^{2}.10}
giải phương trình bâc 2 này ra ta được: \omega =40\Pi

25 tháng 1 2016

Z=Z_{C}=Z_{Lr}=100\Omega

Z_{C}=2Z_{L}\Rightarrow \frac{1}{\omega C}=2\omega L\Rightarrow \frac{1}{LC}=2\omega ^{2}(1)

{\omega _{0}}^{2}=\frac{1}{L(C+\Delta C)}(2)

Lấy (1) chia (2) ta được:  \frac{2\omega ^{2}}{{\omega _{0}}^{2}}=\frac{C+\Delta C}{C}


 

30 tháng 1 2016

       \(W= W_{Cmax}=W_C+W_L\)

=> \(W_L = W_{Cmax}-W_C= \frac{1}{2}C.(U_0^2-u^2)= 5.10^{-7}J.\)

30 tháng 1 2016

khó lắm anh ơi em mới học lớp 6 thui.

ok

23 tháng 6 2016

Điện dung của tụ điện: \(C=\dfrac{\varepsilon S}{4\pi k d}\), nên C tỉ lệ thuận với hằng số điện môi \(\varepsilon\) và tiết diện \(S\)

Gọi C là điện dung của tụ khi không có điện môi, suy ra khi có điện môi thì điện dung là \(C_1=\varepsilon C\)

Khi rút tấm điện môi ra sao cho tấm điện môi chỉ chiếm một nửa không gian tụ, lúc này ta coi tụ gồm hai bản tụ nối song song, trong đó 1 tụ không có điện môi, một tụ chứa đầy điện môi. Điện dung của tụ lúc này là: \(C_2=\dfrac{C}{2}+\dfrac{\varepsilon C}{2}=\dfrac{1+\varepsilon}{2}.C\)

Khi dòng điện tức thời của mạch cực đại thì năng lượng của tụ bằng 0, do vậy thao tác trên tụ thì năng lượng của mạch LC vẫn bảo toàn.

\(W_1=W_2\Rightarrow C_1.U_{01}^2=C_2.U_{02}^2\)

\(\Rightarrow U_{02}=U_{01}\sqrt{\dfrac{C_1}{C_2}}=U_{01}.\sqrt{\dfrac{2\varepsilon}{1+\varepsilon}}=6\sqrt 3.\sqrt {\dfrac{4}{3}}=12(V)\)

Chọn B.