Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn nên gửi mỗi câu hỏi một bài thôi để mọi người tiện trao đổi.
1. \(Z_L=200\sqrt{3}\Omega\), \(Z_C=100\sqrt{3}\Omega\)
Suy ra biểu thức của i: \(i=1,1\sqrt{2}\cos\left(100\pi t-\frac{\pi}{3}\right)A\)
Công suất tức thời: p = u.i
Để điện áp sinh công dương thì p > 0, suy ra u và i cùng dấu.
Biểu diễn vị trí tương đối của u và i bằng véc tơ quay ta có:
u u i i 120° 120°
Như vậy, trong 1 chu kì, để u, i cùng dấu thì véc tơ u phải quét 2 góc như hình vẽ.
Tổng góc quét: 2.120 = 2400
Thời gian: \(t=\frac{240}{360}.T=\frac{2}{3}.\frac{2\pi}{100\pi}=\frac{1}{75}s\)
2. Khi nối tắt 2 đầu tụ điện thì cường độ dòng điện hiệu dụng không đổi \(\Rightarrow Z_1=Z_2\Leftrightarrow Z_C-Z_L=Z_L\Leftrightarrow Z_C=2Z_L\)
\(U_C=1,2U_d\Leftrightarrow Z_C=2Z_d\Leftrightarrow Z_C=2\sqrt{R^2+Z_L^2}\)
\(\Leftrightarrow2Z_L=\sqrt{R^2+Z_L^2}\Leftrightarrow R=\sqrt{3}Z_L\)
Khi bỏ tụ C thì cường độ dòng điện của mạch là: \(I=\frac{U}{Z_d}=\frac{U}{\sqrt{R^2+Z_L^2}}=\frac{220}{\sqrt{3.Z_L^2+Z_L^2}}=0,5\)
\(\Rightarrow Z_L=220\Omega\)
Ta thấy suất điện động của nguồn là:
$E=I(1+r)$
Áp dụng:
$T=2\pi \sqrt{LC}\Rightarrow L=1,25.10^{-7}$
Bảo toàn năng lượng toàn phần của mạch ta có:
$L(8I)^2=CE^2$
$\Leftrightarrow L(8I)^2=C(R+r)^2I^2$
$\Leftrightarrow r=1\Omega $
Dòng điện đổi chiều khi dòng điện đi qua VTCB.
Vẽ đường tròn tương ứng
-60 x 0 N M 150
Vị trí ban đầu ứng với pha ban đầu là \(-\frac{\pi}{3}\) ứng với điểm N.
Vị trí gần nhất (quay theo chiều ngược chiều kim đồng hồ) thì điểm N là vị trí gần nhất tại đó dòng đổi chiều.
\(t=\frac{\varphi}{\omega}=\frac{5\pi}{6}\Rightarrow\omega=\frac{5\pi}{6}:t=2\pi.10^6\)
Điện tích cực đại \(Q_o=\frac{I_0}{\omega}=\frac{30}{2\pi.10^6}=\frac{1,5.10^{-5}}{\pi}C\)
Như vậy đáp án C thỏa mãn.
\(T = 2\pi .\sqrt{LC} = 2.10^{-5}s.\)
Thời gian từ lúc hiệu điện thế trên tụ cực đại U0 đến lúc hiệu điện thế trên tụ \(+\frac{U_0}{2}\) tính dựa vào đường tròn
U 0 +U 0 2
\(\cos \varphi = \frac{U_)/2}{U_0}= \frac{1}{2}=> \varphi= \frac{\pi}{3}. \)
\( t = \frac{\varphi}{\omega}= \frac{\pi/3}{2\pi/T}= \frac{T}{6}= \frac{1}{3}.10^{-5}s.\)
Tần số: \(f=\dfrac{1}{2\pi\sqrt {LC}}\Rightarrow f^2=\dfrac{a}{C}\) (a là 1 hằng số nào đó, do bài này f chỉ phụ thuộc vào C)
\(\Rightarrow f_1^2=\dfrac{a}{C_1}\)
\(f_2^2=\dfrac{a}{C_2}\)
Cần tìm: \(\Rightarrow f^2=\dfrac{a}{C}=a.(\dfrac{1}{C_1}+\dfrac{1}{C_2})=f_1^2+f_2^2\)
\(\Rightarrow f=\sqrt{30^2+40^2}=50(Hz)\)
Cứ sau những khoảng thời gian \(\frac{T}{4}\) s thì năng lượng trong tụ điện và trong cuộn cảm lại bằng nhau.
\(=> \frac{T}{4}=1\mu s=> T = 4.10^{-6}s.\)
\(W_{Cmax} = \frac{1}{2}CU_0^2=> C = \frac{2W_{Cmax}}{U_0^2} = 1,25.10^{-7}F.\)
\(T = 2\pi .\sqrt{LC}=> L = \frac{T^2}{4\pi^2C}=\frac{32}{\pi^2}\mu H.\)