Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Nếu trong \(5\) học sinh phải có ít nhất \(2\) học sinh nữ và \(2\) học sinh nam thì có \(2\) trường hợp :
\(2\) nam \(3\) nữ, có : \(C^2_{10}.C^3_{10}\) cách:
\(3\) nam và \(2\) nữ, có : \(C^3_{10}.C^2_{10}\) cách:
Vậy tất cả có : \(2.C^2_{10}.C^3_{10}=10800\) cách.
b) Nếu trong \(5\) học sinh phải có ít nhất \(1\) học sinh nữ và \(1\) học sinh nam thì có 4 trường hợp :
\(1\) nam và \(4\) nữ, có: \(C^1_{10}.C^4_{10}\) cách.
\(2\) nam và \(3\) , có : \(C^2_{10}.C^3_{10}\) cách.
Còn lại bn tự lm nha, mỏi tay quá
![](https://rs.olm.vn/images/avt/0.png?1311)
số cách gọi 4 hs lên bảng là: \(C^4_{25}\)Gọi A là biến cố :" bốn hs lên bảng có cả nam và nữ:
=> ta phải tính n(A)=?
phương án 1; 3 nam và 1 nữ: \(C^3_{15}.C^1_{10}=4550\)
phương án 2: 2 nam và 2 nữ : \(C^1_{15}.C^2_{10}=4725\)
phương án 3: 1 nam vfa 3 nữ: \(C^1_{15}.C^3_{10}=1800\)
=> n(A)=4550+4725+1800=11075 cách
=> p(A)=\(\frac{11075}{C^4_{25}}=\frac{443}{506}\)
chue yếu bạn áp dụng các quy tắc cộng và nhân là xong
![](https://rs.olm.vn/images/avt/0.png?1311)
a. Chọn bất kì 5 học sinh từ 50 học sinh có: \(C_{50}^5\) cách
b. Lớp có 20 học sinh nam. Chọn 5 bạn trong đó có 2 bạn nam (suy ra 3 bạn nữ) đồng nghĩa: chọn 2 nam từ 20 nam và 3 nữ từ 30 nữ
\(\Rightarrow\) Có \(C_{20}^2.C_{30}^3\) cách
c. Số cách chọn 5 bạn toàn là nữ: \(C_{30}^5\) cách
Số cách chọn 5 bạn có ít nhất 1 nam: \(C_{50}^5-C_{30}^5\) cách
![](https://rs.olm.vn/images/avt/0.png?1311)
Chọn C
Có 20 cách chọn bạn học sinh nam và 24 cách chọn bạn học nữ.
Vậy có 20×24= 480 cách chọn hai bạn (1 nam 1 nữ) tham gia đội cờ đỏ
![](https://rs.olm.vn/images/avt/0.png?1311)
Đáp án : A
Để lựa chọn được hai ban thỏa mãn yêu cầu, ta chia làm hai công đoạn.
Công đoạn 1: Chọn một học sinh giỏi nữ, có 9 cách thực hiện.
Công đoạn 2. Chọn một học sinh giỏi nam, có 7 cách thực hiện.
Vậy theo quy tắc nhân, sẽ có 9.7=63 cách lựa chọn.
![](https://rs.olm.vn/images/avt/0.png?1311)
Số phần tử của không gian mẫu là n(Ω) = 6!
Gọi A là biến cố 'nam ngồi đối diện nữ.'
Chọn chỗ cho học sinh nam thứ nhất có 6 cách.
Chọn chỗ cho học sinh nam thứ 2 có 4 cách (không ngồi đối diện học sinh nam thứ nhất)
Chọn chỗ cho học sinh nam thứ 3 có 2 cách (không ngồi đối diện học sinh nam thứ nhất, thứ hai).
Xếp chỗ cho 3 học sinh nữ : 3! cách.
=> n(A) = 6.4.2.3! = 288
Vậy P(A) = 288/6!
![](https://rs.olm.vn/images/avt/0.png?1311)
Trường hợp 1: Chọn 3 nữ, 2 nam ⇒ có cách chọn
Trường hợp 2: Chọn 4 nữ, 1 nam có cách chọn
Do đó có cách chọn.
Chọn B.
a)chọn 5hs bất kì trong 15 học sinh => 15C5=3003 cách ( có 3th :th 5 học sinh toàn nam,th 5hs toàn nữ,th 5 học sinh trong đó có cả nam và nữ)
b) chọn 5hs nữ bất kì trong 10 hs nữ có 10C5=252 cách