K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 12 2021

a, Gọi A là biến cố "Cả 3 bạn là nam".

\(\left|\Omega\right|=C^3_{25}\)

\(\left|\Omega_A\right|=C^3_{13}\)

\(\Rightarrow P\left(A\right)=\dfrac{\left|\Omega_A\right|}{\left|\Omega\right|}=\dfrac{C^3_{13}}{C^3_{25}}=\dfrac{143}{1150}\)

28 tháng 12 2021

b, Gọi B là biến cố "Có 2 bạn nam và 1 bạn nữ".

\(\left|\Omega\right|=C^3_{25}\)

\(\left|\Omega_B\right|=C^2_{13}.C^1_{12}\)

\(\Rightarrow P\left(B\right)=\dfrac{\left|\Omega_B\right|}{\left|\Omega\right|}=\dfrac{C^2_{13}.C^1_{12}}{C^3_{25}}=\dfrac{234}{575}\)

NV
25 tháng 12 2022

Không gian mẫu: \(C_5^3=10\)

Chọn 3 bạn có ít nhất 2 nữ: ta có 2 trường hợp thuận lợi là 2 nữ 1 nam và 3 bạn đều nữ

\(\Rightarrow C_2^1.C_3^2+C_3^3=7\) cách

Xác suất: \(P=\dfrac{7}{10}\)

25 tháng 12 2017

Chọn B

Chọn mỗi tổ 2 bạn nên số phần tử của không gian mẫu .

Gọi A là biến cố : “Có đúng 3 bạn nữ trong 4 bạn đi lao động”, khi đó

TH1: Chọn 2 nữ tổ I, 1 nữ tổ II, 1 nam tổ II có 3OlOvpS2jBCF.png.

TH2: Chọn 2 nữ tổ II, 1 nữ tổ I, 1 nam tổ I có uAxVuTBKdSTL.png.

Suy ra .

Xác suất để chọn 4 bạn đi lao động có đúng 3 bạn nữ là nbMwfGZorsXX.png.

\(n\left(\Omega\right)=C^2_8\)

\(n\left(A\right)=C^2_5\)

=>P(A)=5/14

13 tháng 8 2018

Chọn B.

Không gian mẫu có số phần tử là RFZcUgR241W6.png.

Gọi A là biến cố: “Trong 5 bạn được chọn có cả nam và nữ, đồng thời số nam nhiều hơn số nữ”. Khi đó, số kết quả thuận lợi cho biến cố A là: .

Vậy xác suất cần tính là NRRxQdmC7Qh3.png.

NV
9 tháng 1 2024

a.

Xếp 4 bạn nữ cạnh nhau: \(4!\) cách

Coi 4 bạn nữ là 1 bạn, xếp với 6 bạn nam: \(7!\) cách

Theo quy tắc nhân ta có: \(4!.7!\) cách

b.

Xếp 6 bạn nam: \(6!\) cách

6 bạn nam tạo thành 7 khe trống, xếp 4 nữ vào 7 khe trống này: \(C_7^4\) cách

\(\Rightarrow6!.C_7^4\) cách

c. Do có 6 nam và 4 nữ nên ko thể tồn tại cách xếp xen kẽ nam nữ (luôn có ít nhất 2 nam đứng cạnh nhau)

d. 

Xếp 4 nữ cạnh nhau: \(4!\) cách

Xếp 6 nam cạnh nhau: \(6!\) cách

Hoán vị nhóm nam và nữ: \(2!\) cách

\(\Rightarrow4!.6!.2!\) cách

19 tháng 2 2018

Gọi A là biến cố: “5 bạn được chọn có cả nam lẫn nữ mà nam nhiều hơn nữ “

- Số phần tử của không gian mẫu: Ω = C 15 5 .

-Số cách chọn 5 bạn trong đó có 4 nam, 1 nữ là:  C 8 4 . C 7 1 .

- Số cách chọn 5 bạn trong đó có 3 nam, 2 nữ là: C 8 3 . C 7 2 .  

Số cách chọn 5  bạn được chọn có cả nam lẫn nữ mà nam nhiều hơn nữ là:

n A = C 8 4 . C 7 1 + C 8 3 . C 7 2 = 1666

Xác suất để 5 bạn được chọn có cả nam lẫn nữ mà nam nhiều hơn nữ là:

P A = n A Ω = 1666 C 15 5 = 238 429 .

Chọn đáp án B.

20 tháng 9 2018

Đáp án A

Có 2 trường hợp như sau

+)TH1: có 3 nam, 2 nữ, suy ra có C 5 3 C 7 2   =   210 cách chọn

+) TH2: có 4 nam, 1 nữ, suy ra có C 5 4 C 7 1   =   35 cách chọn

Suy ra xác suất cần tính bằng

18 tháng 6 2018

Chọn A

Số cách chọn một bạn nam là 12 cách.

Số cách chọn một bạn nữ là 10 cách

Vậy số cách chọn hai bạn trực nhật có cả nam và nữ là 12.10 = 120 (cách)

1 tháng 4 2017

Không gian mẫu là chọn ngẫu nhiên 5 học sinh từ 12 học sinh.

Suy ra số phần tử của không gian mẫu là .

Gọi A là biến cố 5 học sinh được chọn có 3 học sinh nam và 2 học sinh nữ trong đó phải nhất thiết có bạn An hoặc bạn Hoa nhưng không có cả hai . Ta mô tả các trường hợp thuận lợi cho biến cố A  như sau:

●   Trường hợp 1. Có bạn An.

Chọn thêm 2 học sinh nam từ 6 học sinh nam, có  cách.

Chọn 2 học sinh nữ từ 4 học sinh nữ (không chọn Hoa), có  cách.

Do đó trường hợp này có  cách.

●   Trường hợp 2. Có bạn Hoa.

Chọn thêm 1 học sinh nữ từ 4 học sinh nam, có  cách.

Chọn 3 học sinh nam từ 6 học sinh nam (không chọn An), có  cách.

Do đó trường hợp này có  cách.

Suy ra số phần tử của biến cố  là 

Vậy xác suất cần tính 

Chọn C.