Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

áp dụng bđt cauchy-shwarz dạng engel
\(\text{ Σ}_{cyc}\frac{a^2}{b+c}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}\)\(=\frac{a+b+c}{2}\)
Ta có hđt \(\text{ Σ}_{cyc}a^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)
Mà a+b+c khác 0 nên a = b = c
\(\Rightarrow N=1\)

Nếu giả sử chiều rộng của dải hoa = \(w\) mét, thì:
Diện tích một hình chữ nhật ở góc:
\(S_{1} = w \cdot \left(\right. x - w \left.\right)\)
Tổng 4 góc:
\(4 \cdot w \cdot \left(\right. x - w \left.\right) = 60\)
Nếu \(w = 1\) mét
Khi đó:
\(4 \cdot 1 \cdot \left(\right. x - 1 \left.\right) = 60\) \(x - 1 = 15\) \(x = 16 \&\text{nbsp}; \left(\right. \text{m} \overset{ˊ}{\text{e}} \text{t} \left.\right)\)
Nếu mỗi dải hoa rộng 1 mét, cạnh khu vườn là 16 m.
nhé bạn
Giả sử mỗi mảnh đất hình chữ nhật ở góc có một cạnh là \(3\) m, cạnh còn lại bằng \(x\) (chiều cạnh vườn).
Tổng diện tích 4 hình chữ nhật là:
\(4 \times \left(\right. 3 \times x \left.\right) = 60\) \(12 x = 60 \Rightarrow x = 5 \&\text{nbsp};(\text{m})\)
Kết quả:
\(\boxed{x=5\text{m}}\)