K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Tính xác suất để 3 viên bi có đủ cả 3 màu

🔹 Bước 1: Tính số cách chọn 3 viên bất kỳ từ 20 viên:

\(C \left(\right. 20 , 3 \left.\right) = \frac{20 \times 19 \times 18}{3 \times 2 \times 1} = 1140\)


🔹 Bước 2: Tính số cách chọn 1 viên mỗi màu (đủ 3 màu):

  • Chọn 1 bi đỏ: \(C \left(\right. 8 , 1 \left.\right) = 8\)
  • Chọn 1 bi xanh: \(C \left(\right. 7 , 1 \left.\right) = 7\)
  • Chọn 1 bi vàng: \(C \left(\right. 5 , 1 \left.\right) = 5\)

⇒ Số cách chọn 1 bi mỗi màu là:

\(8 \times 7 \times 5 = 280\)


✅ Xác suất:

\(P = \frac{280}{1140} = \frac{14}{57}\)


b) Tính xác suất để 3 viên có đủ 3 màu và 3 số đôi một khác nhau

Ở đây cần loại bỏ các trường hợp mà các viên bi trùng số (vì mỗi màu đều có số từ 1 đến ... nên có thể trùng số, ví dụ cùng là số 2 ở ba màu).


🔹 Bước 1: Đếm số cách chọn 1 bi mỗi màu sao cho 3 số khác nhau

  • Ta cần đếm số bộ (r, g, y) sao cho:
    • \(r \in \left{\right. 1..8 \left.\right}\) (bi đỏ)
    • \(g \in \left{\right. 1..7 \left.\right}\) (bi xanh)
    • \(y \in \left{\right. 1..5 \left.\right}\) (bi vàng)
    • r ≠ g, r ≠ y, g ≠ y

Ta đếm số bộ thỏa mãn điều kiện bằng cách:

  1. Tổng số bộ (r, g, y): \(8 \times 7 \times 5 = 280\) (như câu a)
  2. Trừ đi số bộ có trùng số giữa các màu.

🔹 Bước 2: Đếm số bộ (r, g, y) có trùng số

✔ Trường hợp 1: r = g ≠ y

  • Có 7 số từ 1 đến 7 chung giữa đỏ và xanh → 7 cách chọn số r = g
  • Mỗi cách chọn r = g, có 4 cách chọn y ≠ r từ {1..5}, loại số r → 4 cách
    → Tổng: \(7 \times 4 = 28\)

✔ Trường hợp 2: r = y ≠ g

  • Có 5 số từ 1 đến 5 chung giữa đỏ và vàng → 5 cách chọn r = y
  • Mỗi cách r = y, có 6 cách chọn g ≠ r từ {1..7} → 6 cách
    → Tổng: \(5 \times 6 = 30\)

✔ Trường hợp 3: g = y ≠ r

  • Có 5 số chung giữa xanh và vàng → 5 cách chọn g = y
  • Mỗi cách, chọn r ≠ g từ {1..8} → 7 cách
    → Tổng: \(5 \times 7 = 35\)

✔ Trường hợp 4: r = g = y

  • Có 5 số chung từ 1 đến 5 → 5 cách

🔹 Tổng số bộ có ít nhất 2 số trùng nhau:

\(28 + 30 + 35 + 5 = 98\)


🔹 Suy ra số bộ (r, g, y) có 3 số khác nhau:

\(280 - 98 = 182\)


✅ Xác suất:

\(P = \frac{182}{1140} = \frac{91}{570}\)


🎉 KẾT LUẬN:

Câu

Kết quả

a)

\(\boxed{\frac{14}{57}}\)1457\boxed{\dfrac{14}{57}}5714​​

b)

\(\boxed{\frac{91}{570}}\)91570\boxed{\dfrac{91}{570}}57091​​

Giả sử trong 4 viên đó có 4 viên đỏ

=>Có \(C^4_6=15\)

=>\(n\left(\overline{A}\right)=15\)

\(n\left(\Omega\right)=C^4_{15}=1365\)

=>\(P_A=1-\dfrac{15}{1365}=\dfrac{90}{91}\)

HQ
Hà Quang Minh
Giáo viên
27 tháng 9 2023

Tổng số kết quả của phép thử có thể xảy ra là \(n(\Omega ) = C_{12}^4 = 495\)

a) Gọi biến cố A: “Trong 4 viên bi lấy ra có ít nhất 1 bi xanh”, suy ra biến cố đối của biến cố là \(\overline A \): “Trong 4 viên bi lấy ra không có viên bi xanh nào”

\(\overline A \) xảy ra khi 4 viên bi lấy ra chỉ có màu đỏ hoặc vàng. Số kết quả thuận lợi cho \(\overline A \)là: \(n(A) = C_9^4 = 126\)

Xác suất của biến cố \(\overline A \) là: \(P(\overline A ) = \frac{{n(\overline A )}}{{n(\Omega )}} = \frac{{126}}{{495}} = \frac{{14}}{{55}}\)

Vậy xác suất của biến cố  là \(P(A) = 1 - P\left( {\overline A } \right) = 1 - \frac{{14}}{{55}} = \frac{{41}}{{55}}\)

b) Gọi biến cố A: “Trong 4 viên bi lấy ra có ít nhất 2 bi đỏ ”, suy ra biến cố đối của biến cố là \(\overline A \): “Trong 4 viên bi lấy ra có nhiều hơn 2 bi đỏ”

\(\overline A \) xảy ra khi 4 viên bi lấy ra có 3 hoặc 4 bi đỏ. Số kết quả thuận lợi cho \(\overline A \)là: \(n(A) = C_4^3.8 + C_4^4 = 33\)

Xác suất của biến cố \(\overline A \) là: \(P(\overline A ) = \frac{{n(\overline A )}}{{n(\Omega )}} = \frac{{33}}{{495}} = \frac{1}{{15}}\)

Vậy xác suất của biến cố  là \(P(A) = 1 - P\left( {\overline A } \right) = 1 - \frac{1}{{15}} = \frac{{14}}{{15}}\)

4 tháng 5 2023

a,  Lấy ngẫu nhiên 3 viên bi có \(C_{16}^3\)

\(\Rightarrow n\left(\Omega\right)=C^3_{16}\)

\(A"\) lấy ba bi có màu trắng "

\(\Rightarrow n\left(A\right)=C_7^3\)

\(\Rightarrow P\left(A\right)=\dfrac{C_7^3}{C_{16}^3}=\dfrac{1}{16}\)

b, B " Lấy 3 bi không có màu đỏ  

TH1 : 3 viên màu trắng \(C_7^3\)

TH2 : 3 viên màu đen \(C_7^3\)

TH3 : 3 viên đủ 2 màu đen trắng : \(C_{13}^3-C_7^3-C_6^3\)

\(\Rightarrow n\left(B\right)=C_7^3+C_6^3+\left(C_{13}^3-C_7^3-C_6^3\right)=286\)

\(\Rightarrow P\left(B\right)=\dfrac{286}{C_{16}^3}=\dfrac{143}{280}\)

15 tháng 5 2023

`\Omega_1=C_9 ^1=9`

`\Omega_2=C_13 ^2=78`

`@TH1:`

Gọi `A:`"Lấy từ hộp thứ nhất viên bi trắng."

   `=>A=C_5 ^1=5`

   `=>P(A)=5/9`

Gọi `B:`" Lấy từ hộp thứ hai `2` viên bi trắng."

   `=>B=C_8 ^2=28`

  `=>P(B)=5/9 . 28/78=70/351`

`@TH2:`

Gọi `C:`"Lấy từ hộp thứ nhất viên bi xanh."

    `=>C=C_4 ^1=4`

        `=>P(C)=4/9`

Gọi `D:`" Lấy từ hộp thứ hai `2` viên bi trắng."

    `=>D=C_7 ^2=21`

         `=>P(D)=4/9 . 21/78=14/117`

HQ
Hà Quang Minh
Giáo viên
27 tháng 9 2023

Tổng số khả năng có thể xảy ra của phép thử là \(n\left( \Omega  \right) = C_7^2.C_7^2 = 441\)

a) Biến cố “Bốn viên bi lấy ra có cùng màu” xảy ra khi mỗi lần lấy từ 2 hộp đều là hai viên bi xạnh hoặc hai viên bi đỏ. Số kết quả thuận lợi cho biến cố là \(C_4^2.C_5^2 + C_3^2.C_2^2 = 63\)

Vậy xác suất của biến cố “Bốn viên bi lấy ra có cùng màu” là \(P = \frac{{63}}{{441}} = \frac{1}{7}\)

b) Số kết quả thuận lợi cho biến cố “Trong 4 viên bi lấy ra có đúng 1 viên bi xanh” là \(C_4^1.C_3^1.C_2^2 + C_3^2.C_5^1.C_2^1 = 42\)

Vậy xác suất của biến cố “Trong 4 viên bi lấy ra có đúng 1 viên bi xanh” là: \(P = \frac{{42}}{{441}} = \frac{2}{{21}}\)

c) Gọi là biến cố “Trong 4 viên bi lấy ra có đủ cả bi xanh và bi đỏ”, ta có biến cố đối là \(\overline A \): “4 viên bi lấy ra chỉ có một màu”

\(\overline A \) xảy ra khi 2 lần lấy ra đều được các viên bi cùng màu xanh hoặc cùng màu đỏ

Từ câu a) ta có xác suất của biến cố \(\overline A \) là \(P\left( {\overline A } \right) = \frac{1}{7}\)

Suy ra, xác suất của biến cố là \(P\left( A \right) = 1 - P\left( {\overline A } \right) = 1 - \frac{1}{7} = \frac{6}{7}\)

\(n\left(C\right)=C^2_6\cdot8\cdot10+C^2_8\cdot6\cdot10+C^2_{10}\cdot6\cdot8=5040\)

a: Số cách chọn là:

\(C^2_5\cdot C^1_4\cdot C^3_6+C^2_5\cdot C^2_4\cdot C^2_6=1700\left(cách\right)\)

b: Số cách chọn 9 viên bất kì là: \(C^9_{15}\left(cách\right)\)

Số cách chọn 9 viên ko có đủ 3 màu là:

\(C^9_9+C^9_{11}+C^9_{10}=66\left(cách\right)\)

=>Có 4939 cách

1:Có hai chiếc hộp chứa bi. Hộp thứ nhất chứa 4 viên bị đỏ và 3 viên bi trắng, hộp thứ hai chứa 5 viên bị đỏ và 3 viên bị trắng. Lấy ngẫu nhiên từ mỗi hộp ra một viên. Có bao nhiêu được 2 viên bi cùng màu A.45 B.14 C.29 D.120 c2. Có bao nhiêu số hạng trong khai triển nhị thức ( x+3)^4 A.7 B.4 C.5 D.6 C3: có bao nhiêu số nguyên m thuộc nửa khoảng [-2020,2021) để phương trình √2x²-2x-m = x-2 có...
Đọc tiếp

1:Có hai chiếc hộp chứa bi. Hộp thứ nhất chứa 4 viên bị đỏ và 3 viên bi trắng, hộp thứ hai chứa 5 viên bị đỏ và 3 viên bị trắng. Lấy ngẫu nhiên từ mỗi hộp ra một viên. Có bao nhiêu được 2 viên bi cùng màu A.45 B.14 C.29 D.120 c2. Có bao nhiêu số hạng trong khai triển nhị thức ( x+3)^4 A.7 B.4 C.5 D.6 C3: có bao nhiêu số nguyên m thuộc nửa khoảng [-2020,2021) để phương trình √2x²-2x-m = x-2 có nghiệm A.2020 B.2017 C.2018 D.2019 C4: Trong mặt phẳng tọa độ oxy ,hai điểm l (-1,2);A (1,-1).Phương trình đường tròn tâm l và đi qua điểm A là : A.(x+1)^2+(y-1)^2=13 B.(X+1)^2+(Y-2)^2=13 C.(X-1)^2+(Y+2)^2=5 D.(X-1)^2+(Y+2)^3=20 C5: Trong mặt phẳng tọa độ oxy,đường thẳng 🔺️:2x-y+2023=0 có một véc tơ pháp tuyến là A.n=(1;2) B.n(2;1) C.n=(4;2) D.n=(-2;1)

Giúp vs b

1

5D

4B

3A

2C

12 tháng 5 2023

Thịnh ơi câu 1 kia?

Chọn C

a: Số cách chọn là \(C^6_{16}=8008\left(cách\right)\)

b: Số cách chọn là \(C^2_4\cdot C^4_{12}=2970\left(cách\right)\)

c: SỐ cách chọn là \(C^6_9+C^6_{12}+C^6_{11}=1470\left(cách\right)\)