Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi x (m) là chiều rộng (x > 0)
⇒ x + 5 (m) là chiều dài
Chiều rộng sau khi tăng: x + 2 (m)
Chiều dài sau khi giảm: x + 5 - 3 = x + 2 (m)
Diện tích lúc đầu: x(x + 5) = x² + 5x (m²)
Diện tích lúc sau: (x + 2)(x + 2) (m²)
Theo đề bài ta có phương trình:
x² + 5x - 16 = (x + 2)(x + 2)
⇔ x² + 5x - 16 = x² + 2x + 2x + 4
⇔ x² + 5x - x² - 2x - 2x = 4 + 16
⇔ x = 20 (nhận)
Vậy chiều rộng của hình chữ nhật là 20 m
Chiều dài của hình chữ nhật là 20 + 5 = 25 m
Gọi x, y lần lượt là độ dài của chiều dài và chiều rộng (\(0< y< x,x>5\) )
Theo đề, có:
\(\left\{{}\begin{matrix}x-y=5\\\left(x-3\right)\left(y+2\right)=xy-16\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x-y=5\\2x-3y=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=25\\y=20\end{matrix}\right.\) (nhận)
Vậy kích thước lúc đầu của hình chữ nhật là: \(x.y=25.20=500\left(m^2\right)\)
Gọi CD hcn ban đầu là a(...)
nửa C hcn là 30m
CR hcn ban đầu là 30-a (m)
độ dài CR sau khi tăng thêm là 35-a (m)
Độ dài CD sau khi giảm là a-2 (m)
diên tích hcn ban đầu là a ( 30 - a ) ( m2 )
diện tích hcn sau khi tăng CR giảm CD là ( a - 2 )( 35 - a )
Theo bài ra ta có pt
( a - 2 )( 35 - a ) -70 = a ( 30 - a )
Tự giải tiếp để tính ra CD CR và S hcn ban đầu
Gọi x,y lần lượt là chiều dài, chiều rộng của miếng đất hình chữ nhật (x>0).
Ta có 2(x+y)=160 <=> x+y=80
<=> y=80-x
Kích thước chiều rộng sau khi tăng 10 là x+10
Kích thước chiều dài sau khi giảm 10 là y-10=80-x-10
Vì sau khi chiều rộng tăng 10, chiều dài giảm 10 thì diện tích tăng 200 nên ta có
(x+10)(70-x)=x(80-x)+200
=> 70x+70-x^2 -10x= 80x-x^2 + 200
=> 70x-80x-10x-x^2+x^2=-70+200
=> -20x=130 <=> x=-6,5 (ktm)
vậy không tìm đc x,y
Gọi chiều dài là a
Chiều rộng là b
Diện tích ban đầu là ab
Chiều dài hơn chiều rộng 12m
=>a-b=12 (1)
Nếu giảm chiều rộng 4m và tăng chiều dài thêm 3m thì diện tích khu vườn giảm 75m2.
=> (a+3)(b-4) =ab-75 <=> ab-4a +3b -12=ab-75 <=>4a-3b=63 (2)
Giải hệ pt gồm pt 1 và pt 2
=> a=27 và b=15
Vậy chiều dài là 27
Chiều rộng là 15
Gọi chiều rộng hình chữ nhật là a (a thuộc N)
chiều dài hình chữ nhật là a+12
Ta có: a(a+12) = (a-4)(a+12+3) + 75
<=> a2+12a= (a-4)(a+15)+75= a2 +11a- 60+ 75
<=> 12a= 11a +15
<=> a=15
=> a+12=15+12=27
Vậy chiều dài hình chữ nhật là 27m, chiều rộng là 15m.
Nửa chu vi hình chữ nhật là: 372 : 2 = 186 (m)
Gọi chiều dài hình chữ nhật là x (m), (0 < x < 186).
=> Chiều rộng hình chữ nhật là: 186 – x (m)
Diện tích hình chữ nhật là: \(\text{x(186 – x) = 186x – x2x2 (m2)}\)
Tăng chiều dài lên 21m thì chiều dài mới là: x + 21 (m)
Tăng chiều rộng lên 10m thì chiều rộng mới là:\(\text{ 186 – x + 10 = 196 – x (m)}\)
Diện tích hình chữ nhật mới là: \(\text{(x + 21)(196 – x) = 175x – x2x2 + 4116 (m2)}\)
Theo đề bài ta có phương trình: \(\text{186x – x2x2 + 2862 = 175x – x2x2 + 4116}\)
ó 11x = 1254 ó x = 114 (tm)
Vậy chiều dài hình chữ nhật là 114m
- Gọi chiều dài và chiều rộng của khu vườn lần lượt là x, y ( m , x,y > 0 )
Có : \(C=2\left(x+y\right)=34\)
\(\Rightarrow x+y=17\left(I\right)\)
Lại có : \(11=S_c-S_m=xy-\left(x-1\right)\left(y+2\right)=11\)
\(\Leftrightarrow xy-\left(xy-y+2x-2\right)=xy-xy+y-2x+2=11\)
\(\Leftrightarrow-2x+y=9\left(II\right)\)
- Giair ( I ) và ( II ) ta được : \(\left\{{}\begin{matrix}x=\dfrac{8}{3}\\y=\dfrac{43}{3}\end{matrix}\right.\)
Mà chiều dài > chiều rộng .
Vậy chiều dài HCN là 43/3 m, chiều rộng là 8/3 m .
Gọi a(m) và b(m) lần lượt là chiều dài và chiều rộng của khu vườn(Điều kiện: a>0; b>0; \(a\ge b\))
Vì chu vi của khu vườn là 34m nên ta có phương trình:
\(2\left(a+b\right)=34\)
\(\Leftrightarrow a+b=17\)(1)
Diện tích khu vườn ban đầu là: \(ab\left(m^2\right)\)
Vì khi tăng chiều rộng thêm 2m và giảm chiều dài đi 1m thì diện tích tăng 11m2 nên ta có phương trình:
\(\left(a-1\right)\left(b+2\right)=ab+11\)
\(\Leftrightarrow ab+2a-b-2-ab-11=0\)
\(\Leftrightarrow2a-b=13\)(2)
Từ (1) và (2) ta lập được hệ phương trình:
\(\left\{{}\begin{matrix}a+b=17\\2a-b=13\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3a=30\\a+b=17\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=10\\b=17-a=17-10=7\end{matrix}\right.\)(thỏa ĐK)
Vậy: Chiều dài khu vườn là 10m
Chiều rộng khu vườn là 7m