Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1:
a, \(x^2+10x+26+y^2+2y\)
\(=x^2+2.x.5+5^2+y^2+2.y.1+1^2\)
\(=\left(x+5\right)^2+\left(y+1\right)^2\)
b, \(x^2-2xy+2y^2+2y+1\)
\(=x^2-2.x.y+y^2+y^2+2.y.1+1^2\)
\(=\left(x-y\right)^2+\left(y+1\right)^2\)
c, \(4x^2+2z^2-4xz-2z+1\)
\(=\left(2x\right)^2-2.2x.z+z^2+z^2-2.z.1+1^2\)
\(=\left(2x-z\right)^2+\left(z-1\right)^2\)
Chúc bạn học tốt!!!
Bài1:
Bn kia giải r nhé
Bài 2:
a)\(127^2+146.127+73^2=127^2+2.73.127+73^2\)
=\(\left(127+73\right)^2=200^2=40000\)
b)\(31,8^2-63,6.21,8+21,8^2=\left(31,8-21,8\right)^2=10^2=100\)
c)\(2018^2-2017^2+2016^2-2015^2+...+2^2-1\)
=\(\left(2018+2017\right)+\left(2015+2016\right)+...+\left(2+1\right)\)
=4025+4031+...+3
=...(bn tự tính)
d)\(2017^2-2016.2018=2017^2-\left(2017^2-1\right)=1\)

a, x2 + 10x + 27
Đặt A = x2 + 2. x. 5 + 52 + 2
= ( x + 5 )2 + 2
Vì ( x + 5 )2 \(\ge\)0 với mọi x
=> ( x + 5 )2 + 2 \(\ge\)2 với mọi x
Hay A \(\ge\)2
Dấu " = " xảy ra khi:
( x + 5 )2 = 0
x + 5 = 0
x = - 5
Vậy Min A = 2 khi x = - 5
b, x2 + x + 7
Đặt B = x2 + x + 7
\(=x^2+x+\frac{1}{4}+\frac{27}{4}\)
\(=\left[x^2+2\cdot x\cdot\frac{1}{2}+\left(\frac{1}{2}\right)^2\right]+\frac{27}{4}\)
\(=\left(x+\frac{1}{2}\right)^2+\frac{27}{4}\)
Vì \(\left(x+\frac{1}{2}\right)^2\ge0\)với mọi x
\(\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{27}{4}\ge\frac{27}{4}\)với mọi x
Hay B \(\ge\frac{27}{4}\)
Dấu " = " xảy ra khi:
\(\left(x+\frac{1}{2}\right)^2=0\)
\(x+\frac{1}{2}=0\)
\(x=-\frac{1}{2}\)
Vậy Min B = \(\frac{27}{4}\)khi x = \(-\frac{1}{2}\)
a) x2 + 10 x + 27 =( x2 + 2. 5 . x + 52 ) + 2 = ( x + 5 ) 2 + 2
Vì ( x + 5 ) 2 \(\ge\) 0 với mọi x nên ( x + 5 ) 2 + 2 \(\ge\) 2 với mọi x
Dấu bằng xảy ra \(\Leftrightarrow\)x + 5 = 0 \(\Leftrightarrow\) x = -5
b) x2 + x + 7 = 0 \(\Leftrightarrow\) x2 + 2. x . \(\frac{1}{2}\)+ \(\left(\frac{1}{2}\right)^2\) + \(\frac{27}{4}\) = 0 \(\Leftrightarrow\)( x + 1/2) 2 + 27/4 = 0
Vì ( x + 1/2 )2 \(\ge\) 0 với mọi x nên ( x + 1/2) 2 + 27/4 \(\ge\)27/4 với mọi x
Dấu bằng xảy ra \(\Leftrightarrow\)x+ 1/2 = 0 \(\Leftrightarrow\) x = ---\(\frac{1}{2}\)
c + d ) Tương tự a, b
e) x2 + 14 x + y2 - 2y +7 = 0 \(\Leftrightarrow\) ( x2 + 2. x. 7 + 72 ) + ( y2 -- 2y + 1 ) -43 = 0 \(\Leftrightarrow\) ( x + 7 ) 2 + ( y -- 1 ) 2 --43 = 0 ( 1 )
Vì ( x + 7 )2 \(\ge\) 0 và ( y -- 1 )2 \(\ge\) 0 với mọi x, y nên ( 1 ) \(\ge\) --43 với mọi x, y
Dấu bằng xảy ra \(\Leftrightarrow\) \(\hept{\begin{cases}x+7=0\\y-1=0\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=-7\\y=1\end{cases}}\)

Câu 1:
a: \(C=a^2+b^2=\left(a+b\right)^2-2ab=23^2-2\cdot132=265\)
b: \(D=x^3+y^3+3xy\)
\(=\left(x+y\right)^3-3xy\left(x+y\right)+3xy\)
\(=1-3xy+3xy=1\)

a , \(16x^2+8x+1=\left(4x\right)^2+2.4x.1+1^2=\left(4x+1\right)^2\)
b , \(x^2-x+\dfrac{1}{4}=x^2-2.x.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2=\left(x-\dfrac{1}{2}\right)^2\)
a,(4x+1)2 e,\(\left(\dfrac{3}{2}x-\dfrac{2}{5}\right)^2\)
b,(x-\(\dfrac{1}{2}\))2 g,\(\left(xy+1\right)^2\)
c,(\(x+\dfrac{3}{2}\))2 h,\(\left(x+5\right)^2\)
d,\(\left(x-\dfrac{5}{4}\right)^2\) i,\(-\left(x-6\right)^2\)
k,\(-\left(2x+3\right)^2\)

Bài 3:
a) ta có: \(A=x^2+4x+9\)
\(=x^2+4x+4+5=\left(x+2\right)^2+5\)
Ta có: \(\left(x+2\right)^2\ge0\forall x\)
\(\Rightarrow\left(x+2\right)^2+5\ge5\forall x\)
Dấu '=' xảy ra khi
\(\left(x+2\right)^2=0\Leftrightarrow x+2=0\Leftrightarrow x=-2\)
Vậy: GTNN của đa thức \(A=x^2+4x+9\) là 5 khi x=-2
b) Ta có: \(B=2x^2-20x+53\)
\(=2\left(x^2-10x+\frac{53}{2}\right)\)
\(=2\left(x^2-10x+25+\frac{3}{2}\right)\)
\(=2\left[\left(x-5\right)^2+\frac{3}{2}\right]\)
\(=2\left(x-5\right)^2+2\cdot\frac{3}{2}\)
\(=2\left(x-5\right)^2+3\)
Ta có: \(\left(x-5\right)^2\ge0\forall x\)
\(\Rightarrow2\left(x-5\right)^2\ge0\forall x\)
\(\Rightarrow2\left(x-5\right)^2+3\ge3\forall x\)
Dấu '=' xảy ra khi
\(2\left(x-5\right)^2=0\Leftrightarrow\left(x-5\right)^2=0\Leftrightarrow x-5=0\Leftrightarrow x=5\)
Vậy: GTNN của đa thức \(B=2x^2-20x+53\) là 3 khi x=5
c) Ta có : \(M=1+6x-x^2\)
\(=-x^2+6x+1\)
\(=-\left(x^2-6x-1\right)\)
\(=-\left(x^2-6x+9-10\right)\)
\(=-\left[\left(x-3\right)^2-10\right]\)
\(=-\left(x-3\right)^2+10\)
Ta có: \(\left(x-3\right)^2\ge0\forall x\)
\(\Rightarrow-\left(x-3\right)^2\le0\forall x\)
\(\Rightarrow-\left(x-3\right)^2+10\le10\forall x\)
Dấu '=' xảy ra khi
\(-\left(x-3\right)^2=0\Leftrightarrow\left(x-3\right)^2=0\Leftrightarrow x-3=0\Leftrightarrow x=3\)
Vậy: GTLN của đa thức \(M=1+6x-x^2\) là 10 khi x=3
Bài 2:
a) \(\left(x+y\right)^2+\left(x^2-y^2\right)\)
\(=\left(x+y\right)^2+\left(x-y\right).\left(x+y\right)\)
\(=\left(x+y\right).\left(x+y+x-y\right)\)
\(=\left(x+y\right).2x\)
c) \(x^2-2xy+y^2-z^2+2zt-t^2\)
\(=\left(x^2-2xy+y^2\right)-\left(z^2-2zt+t^2\right)\)
\(=\left(x-y\right)^2-\left(z-t\right)^2\)
\(=\left[x-y-\left(z-t\right)\right].\left(x-y+z-t\right)\)
\(=\left(x-y-z+t\right).\left(x-y+z-t\right)\)
Chúc bạn học tốt!

a) \(\left(x+4\right)\left(x^2-4x+16\right)=x^3+4^3=x^3+64\)
b) \(\left(\frac{1}{3}x+2y\right)\left(\frac{1}{9}x^2-\frac{2}{3}xy+4y^2\right)=\left(\frac{1}{3}x\right)^3+\left(2y\right)^3=\frac{1}{27}x^3+8y^3\)
c) \(\left(x-3y\right)\left(x^2+3xy+9y^2\right)=x^3-\left(3y\right)^3=x^3-27y^3\)
d) \(\left(x^2-\frac{1}{3}\right)\left(x^4+\frac{1}{2}x^2+\frac{1}{9}\right)=\left(x^2\right)^3-\left(\frac{1}{3}\right)^3=x^6-\frac{1}{9}\)
( x + 4 )( x2 - 4x + 16 ) = x3 + 43 = x3 + 64
( 1/3x + 2y )( 1/9x2 - 2/3xy + 4y2 ) = ( 1/3x )3 - ( 2y )3 = 1/27x3 - 8y3
( x - 3y )( x2 + 3xy + 9y2 ) = x3 - ( 3y )3 = x3 - 27y3
( x2 - 1/3 )( x4 + 1/3x2 + 1/9 ) = ( x2 )3 - ( 1/3 )3 = x6 - 1/27
HĐT số 6 + 7 bạn nhé ^^
A
Diện tích hình chữ nhật là \(4x\cdot3xy=4\cdot3\cdot x\cdot x\cdot y=12x^2y\) \(\)
=>Chọn A