Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 5: Gọi thời gian làm riêng của người thứ nhất và người thứ hai lần lượt là x(ngày) và y(ngày)
(Điều kiện: x>0; y>0)
Trong 1 ngày, người thứ nhất làm được: \(\frac{1}{x}\) (công việc)
Trong 1 ngày, người thứ hai làm được: \(\frac{1}{y}\) (công việc)
Trong 1 ngày, hai người làm được: \(\frac16\) (công việc)
Do đó, ta có: \(\frac{1}{x}+\frac{1}{y}=\frac16\left(1\right)\)
Trong 3 ngày, người thứ nhất làm được: \(\frac{3}{x}\) (công việc)
Trong 3+4=7 ngày, người thứ hai làm được: \(\frac{7}{y}\) (công việc)
Sau khi làm chung trong 3 ngày thì người thứ nhất đi làm việc khác, người thứ hai hoàn thành phần còn lại trong 4 ngày nên ta có: \(\frac{3}{x}+\frac{7}{y}=1\left(2\right)\)
Từ (1),(2) ta có hệ phương trình:
\(\begin{cases}\frac{1}{x}+\frac{1}{y}=\frac16\\ \frac{3}{x}+\frac{7}{y}=1\end{cases}\Rightarrow\begin{cases}\frac{3}{x}+\frac{3}{y}=\frac36=\frac12\\ \frac{3}{x}+\frac{7}{y}=1\end{cases}\)
=>\(\begin{cases}\frac{3}{x}+\frac{7}{y}-\frac{3}{x}-\frac{3}{y}=1-\frac12=\frac12\\ \frac{1}{x}+\frac{1}{y}=\frac16\end{cases}\Rightarrow\begin{cases}\frac{4}{y}=\frac12\\ \frac{1}{x}=\frac16-\frac{1}{y}\end{cases}\)
=>\(\begin{cases}y=8\\ \frac{1}{x}=\frac16-\frac18=\frac{1}{24}\end{cases}\Rightarrow\begin{cases}y=8\\ x=24\end{cases}\) (nhận)
Vậy: thời gian làm riêng của người thứ nhất và người thứ hai lần lượt là 24(ngày) và 8(ngày)
Bài 3:
Gọi số sản phẩm tổ 1 và tổ 2 làm được trong tháng thứ nhất lần lượt là x(sản phẩm) và y(sản phẩm)
(Điều kiện: x,y∈N*)
Tổng số sản phẩm hai tổ làm được trong tháng thứ nhất là 500 sản phẩm nên x+y=500(3)
Số sản phẩm tổ 1 làm được trong tháng thứ hai là: \(x\left(1+10\%\right)=1,1x\) (sản phẩm)
Số sản phẩm tổ 2 làm được trong tháng thứ hai là:
\(y\left(1+15\%\right)=1,15y\) (sản phẩm)
Tổng số sản phẩm hai tổ làm được trong tháng thứ hai là 564 sản phẩm nên 1,1x+1,15y=564(4)
Từ (3),(4) ta có hệ phương trình:
\(\begin{cases}x+y=500\\ 1,1x+1,15y=564\end{cases}\Rightarrow\begin{cases}1,1x+1,1y=550\\ 1,1x+1,15y=564\end{cases}\)
=>\(\begin{cases}1,1x+1,15y-1,1x-1,1y=564-550=14\\ x+y=500\end{cases}\)
=>\(\begin{cases}0,05y=14\\ x+y=500\end{cases}\Rightarrow\begin{cases}y=280\\ x=500-280=220\end{cases}\) (nhận)
Vậy: số sản phẩm tổ 1 và tổ 2 làm được trong tháng thứ nhất lần lượt là 220(sản phẩm) và 280(sản phẩm)

Tham khảo tại đây nha:
Câu hỏi của Moe - Toán lớp 9 - Học toán với online math
mã câu :1308090

tìm trc khi hỏi Câu hỏi của mai - Toán lớp 9 | Học trực tuyến

1. Ta có : \(\frac{a}{a+b+c+d}< \frac{a}{a+b+c}< \frac{a+d}{a+b+c+d}\)
\(\frac{b}{a+b+c+d}< \frac{b}{b+c+d}< \frac{a+b}{a+b+c+d}\)
\(\frac{c}{a+b+c+d}< \frac{c}{a+c+d}< \frac{b+c}{a+b+c+d}\)
\(\frac{d}{a+b+c+d}< \frac{d}{a+b+d}< \frac{c+d}{a+b+c+d}\)
Cộng vế theo vế ta được :
\(1< \frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}< 2\) ( đpcm )
2. Áp dụng bất đẳng thức Cô - si cho 2 số ko âm b-1 và 1 ta có :
\(\sqrt{\left(b-1\right)\cdot1}\le\frac{\left(b-1\right)+1}{2}=\frac{b}{2}\)
Dấu "=" xảy ra <=> b - 1 = 1 <=> b = 2
\(\Rightarrow a\sqrt{b-1}=a\sqrt{\left(b-1\right)\cdot1}\le a\cdot\frac{b}{2}=\frac{ab}{2}\)
Tương tự ta có : \(b\sqrt{a-1}\le\frac{ab}{2}\) Dấu "=" xảy ra <=> a = 2
Do đó : \(a\sqrt{b-1}+b\sqrt{a-1}\le\frac{ab}{2}+\frac{ab}{2}=ab\)
Dấu "=" xảy ra <=> a = b = 2
Đáp án là B