Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Diện tích hình vuông cạnh c là \(S=c^2\)
Tổng diện tích hai hình chữ nhật là \(S_1=2ab\)
Xét tg vuông có \(c^2=a^2+b^2\)
Áp dụng cosi có
\(\frac{a+b}{2}\ge\sqrt{ab}\Rightarrow\frac{a^2+b^2+2ab}{4}\ge ab\Rightarrow a^2+b^2\ge2ab\) Dấu = xảy ra khi \(a=b\)
\(\Rightarrow S\ge S_1\left(dpcm\right)\)
\(S=S_1\) Khi a=b => tg ban đầu phải là tg vuông cân
Bài 1:
Theo đề, ta có: \(\dfrac{AB}{BC}=\dfrac{30}{7}:\dfrac{40}{7}=\dfrac{3}{4}\) và \(AC=4+5+\dfrac{2}{7}+\dfrac{5}{7}=10\)
=>AB/3=BC/4
Đặt AB/3=BC/4=k
=>AB=3k; BC=4k
Xét ΔABC vuông tại B có \(AC^2=AB^2+BC^2\)
\(\Leftrightarrow25k^2=100\)
=>k=2
=>AB=CD=6(cm); BC=AD=8(cm)
Câu 4:
A B C E F H O I P K Q x
a) Vì BE,CF là các đường cao của \(\Delta\)ABC nên ^BEC = ^CFB = 900
=> ^BEC và ^CFB cùng nhìn đoạn BC dưới một góc 900
=> Bốn điểm B,C,E,F cùng thuộc đường tròn đường kính BC (Theo quỹ tích cung chứa góc) (đpcm).
b) Gọi Ax là tia tiếp tuyến tại A của đường tròn (O), khi đó OA vuông góc Ax
Từ câu a ta thấy tứ giác BFEC nội tiếp đường tròn (BC) => ^AFE = ^ACB
Mà ^ACB = ^BAx (Tính chất góc tạo bởi tiếp tuyến và dây) nên ^AFE = ^BAx
=> EF // Ax (2 góc so le trong bằng nhau)
Do OA vuông góc Ax nên OA vuông góc EF (Quan hệ song song, vuông góc) (đpcm).
c) +) Ta dễ có ^OAC = 900 - ^AOC/2 = 900 - ^ABC = ^BAH => ^OAC + ^OAH = ^BAH + ^OAH => ^BAI = ^EAP
Xét \(\Delta\)APE và \(\Delta\)AIB: ^EAP = ^BAI, ^AEP = ^ABI (Tứ giác BFEC nội tiếp) => \(\Delta\)APE ~ \(\Delta\)AIB (g.g) (đpcm).
+) Gọi AO cắt đường tròn (O) lần thứ hai tại Q. Khi đó AQ là đường kính của (O)
Nên ta có: ^ABQ = ^ACQ = 900 hay BQ vuông góc AB, CQ vuông góc AC. Mà CH vuông góc AB, BH vuông góc AC
Nên BQ // CH, BH // CQ (Quan hệ song song vuông góc) => Tứ giác BHCQ là hình bình hành
Từ đó HQ đi qua trung điểm K của BC hay H,K,Q thẳng hàng (1)
Cũng dễ thấy ^QBC = ^HCB (Vì BQ // CH) = ^FEH (Vì B,C,E,F cùng thuộc một đường tròn)
Hay ^QBI = ^HEP. Kết hợp với ^BQI = ^BQA = ^ACB = ^AHE (Cùng phụ ^CAH) = ^EHP
Suy ra \(\Delta\)BIQ ~ \(\Delta\)EPH (g.g) => \(\frac{HP}{QI}=\frac{EP}{BI}\). Lại có \(\frac{EP}{BI}=\frac{AP}{AI}\)nên \(\frac{HP}{QI}=\frac{AP}{AI}\)
Áp dụng ĐL Thales đảo vào \(\Delta\)AQH ta có IP // HQ (2)
Từ (1) và (2) ta thu được KH // IP (đpcm).
Nếu ko nhìn rõ thì bn có thể tham khảo tại:
https://vietnamnet.vn/vn/giao-duc/tuyen-sinh/dap-an-mon-toan-thi-tuyen-sinh-lop-10-ha-noi-2019-cua-so-gd-dt-ha-noi-539465.html
https://vnexpress.net/giao-duc/so-giao-duc-va-dao-tao-ha-noi-cong-bo-dap-an-thi-vao-lop-10-3934904.html
https://vietnamnet.vn/vn/giao-duc/tuyen-sinh/dap-an-mon-toan-thi-tuyen-sinh-lop-10-ha-noi-2019-cua-so-gd-dt-ha-noi-539465.html
https://tin.tuyensinh247.com/dap-an-de-thi-vao-lop-10-mon-toan-ha-noi-nam-2019-c29a45461.html
Gọi 3 độ dài kích thước hình hộp chữ nhật là a;b;h .
Gọi độ dài 1 cạnh hình lập phương là c
=> Vhhcn = a.b.h
Vhlp = c3 ; mà a + b + h = c + c + c = 3c
Khi đó Vhlp = c3 = \(\left(\frac{a+b+h}{3}\right)^3\ge\left(\frac{3\sqrt[3]{abh}}{3}\right)^3=abh\)= Vhhcn
=> ĐPCM ("=" khi a = b = h = c)
Hình như đề sai nha bạn
khi đó x + y + z = 1 ; x3 + y3 + z3 = 3
mà (x + y + z)3 = x3 + y3 + z3 + 3(x + y)(y + z)(z + x)
<=> 13 = 3 + 3(x + y)(y + z)(z + x)
<=> 3(x + y)(y + z)(z + x) = -2 (vô lý vì 3(x + y)(y + z)(z + x) > 0)
Iuukweewddukhkhuckekwhkuekcwuhwdikeuldkhscuhkjdcshudscjhukidschfshjrskdhjfursiuhukerfhevkhgyrukeaguukeeafduuhkafeuiehfugkurfrfaegukurgfeuwukfegukuqrfrekgquufrequgkuefqehhmeihuewkfkihurfewuhkifrekwhhubrhefjwkhjbkefeqhebfeqkehbfjkeahejchkeajhhkeceahjbkceeabhjrevahkbjreahhjvjbhkvfhhjkfvsrhhkjbhkrjfeahjhkvreajhbkvesrhvbjerahjbkrfeajhhkefrahhikferahhkjfreahhrfeajfrehuiqkrhehiakfhfhhrefkiuahiukrfea