K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4 2016

\(\alpha + _7^{14}N \rightarrow _1^1p + _8^{17}O\)

\(m_t-m_s = m_{\alpha}+m_N - (m_{O}+m_p) =- 1,3.10^{-3}u < 0\), phản ứng thu năng lượng.

\(W_{thu} = (m_s-m_t)c^2 = K_t-K_s\)

=> \(1,3.10^{-3}.931,5 = K_{He}+K_N- (K_p+K_O)\)(do Nito đứng yên nên KN = 0)

=> \(K_p +K_O = 6,48905MeV. (1)\)

Áp dụng định luật bảo toàn động lượng

P P α P p O

\(\overrightarrow P_{\alpha} =\overrightarrow P_{p} + \overrightarrow P_{O} \)

Dựa vào hình vẽ ta có (định lí Pi-ta-go)

 \(P_{O}^2 = P_{\alpha}^2+P_p^2\)

=> \(2m_{O}K_{O} = 2m_{He}K_{He}+ 2m_pK_p.(2)\)

Từ (1) và (2) giải hệ phương trình ta được

\(K_p = 4,414MeV; K_O = 2,075 MeV.\)

 

 

 

15 tháng 3 2016

Câu này của bạn vừa được trả lời rồi.

15 tháng 3 2016

Câu hỏi của Thư Hoàngg - Học và thi online với HOC24

28 tháng 4 2016

ban đầu bản phải viết phương trình ra mới làm được loại này :

Li73 +11p => 2. 42X (heli)

sau đó dùng ct: ΔW=(mtrước -msau).c2 =>  1 hạt LI tạo RA 2 hạt heli và bao nhiêu năng lượng =>> 1,5gX là bao nhiêu hạt sau đó nhân lên. 

 

 

 

V
violet
Giáo viên
29 tháng 4 2016

\(^1_1p+^7_3Li\rightarrow ^4_2X + ^4_2X\)

Năng lượng toả ra của phản ứng: \(W_{toả}=(1,0087+7,0744-2.4,0015).931=74,5731MeV\)

Số hạt X là: \(N=\dfrac{1,5}{4}.6,02.10^{23}=2,2575.10^{23}\)(hạt)

Cứ 2 hạt X sinh ra thì toả năng lượng như trên, như vậy tổng năng lượng toả ra là: 

\(\dfrac{2,2575.10^{23}}{2}.74,5731=8,27.10^{24}MeV\)

V
violet
Giáo viên
11 tháng 4 2016

\(_1^1p + _4^9Be \rightarrow \alpha + _3^6Li\)

Phản ứng này thu năng lượng => \(W_{thu} =(m_s-m_t)c^2 = K_t-K_s\)

=> \( K_p+ K_{Be}-K_{He}- K_{Li} = W_{thu} \) (do Be đứng yên nên KBe = 0)

=> \(K_p = W_{thu}+K_{Li}+K_{He} = 2,125+4+3,575 = 9,7MeV.\)

Áp dụng định luật bảo toàn động lượng

P P P α α p Li

\(\overrightarrow P_{p} =\overrightarrow P_{He} + \overrightarrow P_{Li} \)

Dựa vào hình vẽ ta có 

Áp dụng định lí hàm cos trong tam giác

=> \(\cos {\alpha} = \frac{P_p^2+P_{He}^2-P_{Li}^2}{2P_pP_{He}} = \frac{2.1.K_p+ 2.4.K_{He}-2.6.K_{Li}}{2.2.2m_pm_{He}K_pK_{He}} = 0.\)

Với  \(P^2 = 2mK, m=A.\).

=> \(\alpha = 90^0.\)

 

11 tháng 4 2016

\(_0^1n + _3^6 Li \rightarrow X + \alpha\)

Áp dụng định luật bảo toàn động lượng 

\(\overrightarrow P_n=\overrightarrow P_{\alpha}+ \overrightarrow P_{X} \)

    P P P He X n

Dựa theo hình vẽ ta có : \(P_{X}^2+ P_{He}^2 = P_n^2\)

=> \(2m_{X}K_{X}+2m_{\alpha} K_{\alpha} = 2m_{n}K_{n}. \)

=> \(3,01600K_{X}+4,0016 K_{\alpha} = 1,00866K_{n} = 1,109526MeV.\ \ (1)\)

Áp dụng định luật bảo toàn năng lượng toàn phần

\(K_{n}+m_{n}c^2+m_{Li}c^2 = K_{\alpha} + m_{\alpha}c^2+ K_{X}+m_{X}c^2\)

=> \(K_{\alpha} + K_{X}=K_{n}+(m_{n}+m_{Li}-m_{\alpha}-m_{X})c^2 = 1,1 + 1,36 = 0,299 meV.\ \ (2)\)

Từ (1) và (2) giải hệ phương trình

\(K_{\alpha} = 0,21 MeV; K_{X }= 0,09 MeV.\)

11 tháng 4 2016

câu c

14 tháng 4 2016

\(Ra \rightarrow Rn+\alpha\)

Áp dụng định luật bảo toàn động lượng

\(\overrightarrow P_{Ra} =\overrightarrow P_{Rn}+ \overrightarrow P_{\alpha} \)=> \(\overrightarrow P_{Rn}+ \overrightarrow P_{\alpha} =\overrightarrow 0\) (do ban đầu Ra đứng yên)

=> \(P_{Rn}= P_{\alpha} \)

mà \(P ^2 = 2mK\) 

=> \(2m_{Rn}K_{Rn}=2m_{\alpha} K_{\alpha} \)

=> \(221,970.K_{Rn}= 4,0015.K_{\alpha}.(1)\)

Áp dụng định luật bảo toàn năng lượng toàn phần

\(K_{Ra}+m_{Ra}c^2 = K_{Rn} + m_{Rn}c^2+ K_{\alpha}+m_{\alpha}c^2\)

=> \(m_{Ra}c^2-m_{Rn}c^2-m_{\alpha}c^2 = K_{Rn} + K_{\alpha}\), ( do \(K_{Ra}=0\))

=> \( K_{Rn} + K_{\alpha}=(m_{Ra}-m_{Rn}-m_{\alpha})c^2\)

                           \(=(225,977 - 221,970 - 4,0105) uc^2= 5,12325 MeV. (2)\)

Từ (1) và (2) ta có hệ 2 phương trình 2 ẩn \(K_{\alpha}; K_{Rn}\) .Bấm máy tính cầm tay 

\(K_{\alpha} = 5,03 MeV; K_{Rn} = 0,09 MeV. \)

 

14 tháng 4 2016

chọn câu C

6 tháng 4 2016

\(_1^1p + _3^7 Li \rightarrow _2^4He+_2^4He\)

\(W_{tỏa} = (m_t-m_s)c^2 =( m_{Li}+m_p - 2m_{He}).931=17,4097MeV.\)

Số hạt nhân \(_2^4He\) trong 1,5 g heli là \(N= nN_A= \frac{m}{A}.N_A = \frac{1,5}{4}.6,02.10^{23}= 2,2575.10^{23} \)(hạt)

      Mỗi phản ứng tạo ra 2 hạt nhân \(_2^4He\) thì tỏa ra năng lượng là 17,4097 MeV

=> Để tạo ra 2,2572.1023 hạt nhân \(_2^4He\) thì tỏa ra năng lượng là 

                         \(W = \frac{17,4097.2,2575.10^{23}}{2} = 1,965.10^{24}MeV.\)

 

6 tháng 4 2016

\(\alpha + _7^{14}N \rightarrow p + _8^{17} O\)

 \(m_t-m_s = m_{\alpha}+m_N - (m_p+m_O) = -1,281.10^{-3}u < 0\), phản ứng là thu năng lượng.

Sử dụng công thức: \(W_{thu} = (m_s-m_t)c^2 = K_t-K_s\)

=> \(1,285.10^{-3}.931 = K_{\alpha}+K_N-( K_p+K_O)\) (do N đứng yên nên KN = 0)

=> \(K_{O} = 1,5074MeV.\)

Áp dụng định luật bảo toàn động lượng

P P α p P α O

\(\overrightarrow P_{\alpha} =\overrightarrow P_{p} + \overrightarrow P_O \)

Dựa vào hình vẽ ta có 

Áp dụng định lí hàm cos trong tam giác

\(P_{\alpha}^2+ P_{p}^2 -2 P_{\alpha}P_{p}\cos{\alpha} = P_{O}^2\)

=> \(\cos {\alpha} = \frac{P_{\alpha}^2+P_p^2-P_O^2}{2P_{\alpha}.P_{p}} = \frac{2m_{\alpha}K_{\alpha}+2m_pK_P-2.m_O.K_O}{2.\sqrt{2.m_{\alpha}K_{\alpha}.2.m_p.K_p}} \)

=> \(\alpha \approx 52^016'\).

 

 

6 tháng 4 2016

Cảm ơn lời giải của bạn Hoc247 nhé.

V
violet
Giáo viên
20 tháng 4 2016

Năng lượng phản ứng tỏa ra là 

\(E =( m_t-m_s)c^2 = (2m_H-m_He- m_n)c^2 \)

\(=(2.2,0135-3,0149-1,0087)u.c^2= 3,4.10^{-3}.931\frac{MeV}{c^2}.c^2= 3,1654MeV.\)

 

22 tháng 3 2016

Năng lượng liên kết riêng của hạt nhân

\(W_{lkr}= \frac{W_{lk}}{A} = \frac{(Zm_p+(A-Z)m_n-m_{Be})c^2}{A}\)

                     \( = \frac{0,0679.931}{10}= 6,3215MeV.\)

10 tháng 4 2016

C. 6, 3215 MeV