Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
Ta có:
- Người lái tàu đứng yên so với đầu tàu và các hành khách trên xe.
- Người lái tàu chuyển động so với người đi xe đạp trên đường và cột mốc bên đường
a/ Gọi t là thời gian hai xe gặp nhau
Quãng đường mà xe gắn máy đã đi là :
S1= V1.(t - 6) = 50.(t-6)
Quãng đường mà ô tô đã đi là :
S2= V2.(t - 7) = 75.(t-7)
Quãng đường tổng cộng mà hai xe đi đến gặp nhau.
AB = S1 + S2
\(\Leftrightarrow\) AB = 50. (t - 6) + 75. (t - 7)
\(\Leftrightarrow\)300 = 50t - 300 + 75t - 525
\(\Leftrightarrow\)125t = 1125
\(\Leftrightarrow\) t = 9 (h)
\(\Leftrightarrow\) S1=50. ( 9 - 6 ) = 150 km
Vậy hai xe gặp nhau lúc 9 h và hai xe gặp nhau tại vị trí cách A: 150km và cách B: 150 km.
b/ Vị trí ban đầu của người đi bộ lúc 7 h.
Quãng đường mà xe gắn mắy đã đi đến thời điểm t = 7h.
AC = S1 = 50.( 7 - 6 ) = 50 km.
Khoảng cách giữa người đi xe gắn máy và người đi ôtô lúc 7 giờ.
CB =AB - AC = 300 - 50 =250km.
Do người đi xe đạp cách đều hai người trên nên:
DB = CD = \(\frac{CB}{2}=\frac{250}{2}=125\). km
Do xe ôtô có vận tốc V2=75km/h > V1 nên người đi xe đạp phải hướng về phía A.
Vì người đi xe đạp luôn cách đều hai người đầu nên họ phải gặp nhau tại điểm G cách B 150km lúc 9 giờ. Nghĩa là thời gian người đi xe đạp đi là:
rt = 9 - 7 = 2giờ
Quãng đường đi được là:
DG = GB - DB = 150 - 125 = 25 km
Vận tốc của người đi xe đạp là.
V3 = \(\frac{DG}{\Delta t}=\frac{25}{2}=12,5\) km/h
Gọi t là thời điểm hai xe gặp nhau.
Quãng đường mà xe gắn máy đã đi:
S1=V1.(t-6)=50.(t-6)
Quãng đường mà ôtô đã đi:
S2=V2.(t-7)=75.(t-7)
Quãng đường tổng cộng mà hai xe đến gặp nhau:
AB=S1+S2
300 = 50.(t-6) + 75.(t-7)
300 = 50.t - 50.6 + 75.t - 75.7
t = 9h
Vậy hai xe gặp nhau lúc 9h
Cách A số km là:
S1= 50. (9-6)=150 km
- Gọi vận tốc của xe 2 là v ® vận tốc của xe 1 là 5v
- Gọi t là thời gian tính từ lúc khởi hành đến lúc 2 xe gặp nhau.
\(\rightarrow\) (C < \(t\le\)50) C là chu vi của đường tròn
a/ Khi 2 xe đi cùng chiều.
- Quãng đường xe 1 đi được: S1 = 5v.t; Quãng đường xe 2 đi được: S2 = v.t
- Ta có: S1 = S2 + n.C
Với C = 50v; n là lần gặp nhau thứ n
\(\rightarrow\) 5v.t = v.t + 50v.n \(\rightarrow\) 5t = t + 50n \(\rightarrow\) 4t = 50n \(\rightarrow\) t = \(\frac{50n}{4}\)
Vì C < t \(\le\) 50 \(\rightarrow\) 0 < \(\frac{50n}{4}\) \(\le\) 50 \(\rightarrow\) 0 < \(\frac{n}{4}\) \(\le\) 1 \(\rightarrow\) n = 1, 2, 3, 4.
- Vậy 2 xe sẽ gặp nhau 4 lần
b/ Khi 2 xe đi ngược chiều.
- Ta có: S1 + S2 = m.C (m là lần gặp nhau thứ m, m\(\in\) N*)
\(\rightarrow\) 5v.t + v.t = m.50v \(\Leftrightarrow\) 5t + t = 50m \(\rightarrow\) 6t = 50m \(\rightarrow\) t = \(\frac{50}{6}\)m
Vì 0 < t \(\le\) 50 \(\rightarrow\) 0 <\(\frac{50}{6}\)m \(\le\) 50
\(\rightarrow\) 0 < \(\frac{m}{6}\) \(\le\) 1 \(\rightarrow\) m = 1, 2, 3, 4, 5, 6
- Vậy 2 xe đi ngược chiều sẽ gặp nhau 6 lần.
b) trường hợp 1 : khi 2 người chưa gặp nhau
gọi t' là thời gian 2 xe cách nhau 2km. ta có :
Quãng đường mỗi xe đi được đến lúc gặp nhau là :
s1' = v1.t' = 4t'
s2' = v2. t' = 12t'
=> s'' = s2' - s1' = 8-2 = 6
=> 8t' = 6
=> t' = 0,75 (h)
vậy 2 người gặp nhau lúc : 9 + 0,75 = 9,75 = 9 giờ 45 phút
th2 : khi 2 xe đã gặp nhau rồi cách nhau 2km
gọi t'' là thời gian 2 xe gặp nhau kể từ lúc xe 2 xuất phát
Quãng đường mỗi xe đi được đến lúc gặp nhau là :
s3 = v1 . t'' = 4t''
s4 = v2 . t'' = 12t''
vì 2 xe đi cùng chiều => s4 - s3 = 8+2 = 10
=> 12t'' - 4t'' = 10
=> t'' = 10/8 = 1,25 ( giờ )
vậy 2 xe cách nhau lúc : 9+ 1,25 = 10,25 = 10 giờ 15 phút
a/ Thời điểm và vị trí lúc hai người gặp nhau:
- Gọi t là khoảng thời gian từ khi người đi bộ đến khởi hành khi đến lúc hai người gặp nhau tại C.
- Quãng đường người đi bộ đi được: S1 = v1t = 4t (1)
- Quãng đường người đi xe đạp đi được: S2 = v2(t-2) = 12(t - 2) (2)
- Vì cùng xuất phát tại A đến lúc gặp nhau tại C nên: S1 = S2
- Từ (1) và (2) ta có:
4t = 12(t - 2) \(\Leftrightarrow\)4t = 12t - 24 \(\Leftrightarrow\)t = 3(h)
- Thay t vào (1) hoặc (2) ta có:
(1) \(\Leftrightarrow\)S1 = 4.3 =12 (Km)
(2) S2 = 12 (3 - 2) = 12 (Km)
Vậy: Sau khi người đi bộ đi được 3h thì hai người gặp nhau và cách A một khoảng 12Km và cách B 12Km.
b/ Thời điểm hai người cách nhau 2Km.
- Nếu S1 > S2 thì:
S1 - S2 = 2 \(\Leftrightarrow\)4t - 12(t - 2) = 2 \(\Leftrightarrow\)4t - 12t +24 =2 \(\Leftrightarrow\)t = 2,75 h = 2h45ph.
- Nếu S1 < S2 thì:
S2 - S1 = 2 \(\Leftrightarrow\) 12(t - 2) - 4t = 2 \(\Leftrightarrow\) 12t +24 - 4t =2 \(\Leftrightarrow\)t = 3,35h = 3h15ph.
Vậy: Lúc 7h + 2h45ph = 9h45ph hoặc 7h + 3h15ph = 10h15ph thì hai người đó cách nhau 2Km
Câu 1:
Vận tốc trung bình của xe trên quãng đường dốc là:
\(v_1\) = \(\frac{s_1}{t_1}\)= \(\frac{120}{30}\) = 4 m/s Vận tốc trung bình của xe trên quãng đường ngang là:
\(v_2\) = \(\frac{s_2}{t_2}\) = \(\frac{60}{24}\) = 2,5 m/s
Vận tốc trung bình của xe trên cả hai quăng đường là:
v = \(\frac{s_1+s_2}{t_1+t_2}\) = \(\frac{120+60}{30+24}\) = 3,33 m/s
Câu 2:
Vận tốc trung bình trên đoạn AB là:
\(v_1\) = \(\frac{AB}{t}\) = 0,05/3 = 0,017 m/s
Vận tốc trung bình trên đoạn BC là:
\(v_2\) = \(\frac{BC}{t}\)= 0,15/3 = 0,05 m/s
Vận tốc trung bình trên đoạn CD là:
\(v_3\) = \(\frac{CD}{t}\) = 0,25/3 = 0,083 m/s
Như vậy, trục bánh xe chuyển động nhanh dần lên.
gọi s là quãng đường AB
s1,s2,s3 lần lượt là từng quãng đường mà xe di chuyển:
s1 = \(\frac{1}{3}s\)
=> s2 + s3 = \(\frac{2}{3}s\)
Thời gian xe di chuyển trong \(\frac{1}{3}\) quãng đường là:
t1 = \(\frac{s_1}{v_1}=\frac{s}{3.40}=\frac{s}{120}\)
Gọi t' là thời gian đi ở quãng đường (\(\frac{2}{3}s\)) còn lại:
Trong \(\frac{2}{3}\) thời gian đầu, xe đi được quãng đường là
s2 = \(\frac{2}{3}t'.v_2=\frac{2}{3}.t'.45=30t'\)
Quãng đường xe đi được trong thời gian còn lại là:
s3=\(\frac{1}{3}t'.v_3=\frac{1}{3}t'.30=10t'\)
Mặt khác ta có
s2 + s3 = \(\frac{2}{3}s\)
=> 30t' + 10t' = \(\frac{2}{3}s\)
=> 40t'=\(\frac{2}{3}s\)
=> t'=\(\frac{s}{60}\)
Vận tốc trung bình của xe là:
\(v_{tb}=\frac{s}{t+t'}=\frac{s}{\frac{s}{120}+\frac{s}{60}}=\frac{1}{\frac{1}{120}+\frac{1}{60}}=40\)(km/h)
Một xe đi từ A về B, trong nửa quãng đương đầu, xe chuyển động với vận tốc v1= 40 km/h. Trên nửa quãng đường sau xe chuyển động thành 2 giai đoạn: nửa thời gian đầu vận tốc v2 = 45 km/h, thời gian còn lại đi với vận tốc v3 = 30 km/h. Tính vận tốc trung bình của xe trên cả quãng đường AB.
Đề phải như này mới đúng
Bài 1:
Gọi S là độ dài \(\dfrac{1}{3}\)đoạn đường
\(\Rightarrow2S\) là độ dài đoạn đường còn lại.
Ta có:
\(V_{tb}=\dfrac{S+2S}{t_1+t_2}=\dfrac{3S}{t_1+t_2}=30\)(*)
Lại có:
\(t_1=\dfrac{S}{V_1}=\dfrac{S}{20}\)
\(t_2=\dfrac{2S}{V_2}\left(2\right)\)
Thay \(\left(1\right),\left(2\right)\) vào (*) ta được:
\(V_{tb}=\dfrac{3S}{t_1+t_2}=\dfrac{3S}{\dfrac{S}{20}+\dfrac{2S}{V_2}}=\dfrac{3}{\dfrac{1}{20}+\dfrac{2}{V_2}}=30\)
\(\Leftrightarrow\dfrac{1}{20}+\dfrac{2}{V_2}=\dfrac{1}{10}\)
\(\Leftrightarrow\dfrac{2}{V_2}=\dfrac{1}{20}\Leftrightarrow V_2=40\)(km/h)
Bài 2:
Gọi \(t\) là \(\dfrac{1}{2}\) thời gian
Ta có:
\(V_{tb}=\dfrac{S_1+S_2}{t+t}=\dfrac{S_1+S_2}{2t}\)(*)
\(S_1=V_1.t=25t\left(1\right)\)
\(S_1=V_2.t=35t\left(2\right)\)
Thay \(\left(1\right),\left(2\right)\) vào (*) ta được:
\(V_{tb}=\dfrac{S_1+S_2}{2t}=\dfrac{25t+35t}{2t}=30\)(km/h)
Đáp án D
Ta có:
- Hành khách đứng yên so với tài xế xe và các hành khách khác trên xe
- Hành khách chuyển động so với người đi xe đạp trên đường và cột mốc bên đường.