K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7 2023

kb với miinhf ko

 

11 tháng 7 2023

a) Ta thấy \(\dfrac{EA}{EK}=\dfrac{ED}{EB}=\dfrac{EG}{EA}\) nên \(AE^2=EK.EG\) (đpcm)

b) Ta có \(\dfrac{AE}{AK}+\dfrac{AE}{AG}=\dfrac{DE}{DB}+\dfrac{BE}{BD}=\dfrac{DE+BE}{BD}=1\) nên suy ra \(\dfrac{1}{AE}=\dfrac{1}{AK}+\dfrac{1}{AG}\) (đpcm)

7 tháng 3 2022

undefined

7 tháng 3 2022

cop nhớ ghi tham khảo

24 tháng 2 2018

Để mình quất cho chứ mấy bạn khác tạm thời chưa quất được

a) Do BK // AD, nên \(\dfrac{EK}{AE}=\dfrac{BE}{ED}\left(1\right)\)

Do AB // DG, nên \(\dfrac{AE}{EG}=\dfrac{BE}{ED}\left(2\right)\)

Từ (1) và (2) suy ra \(\dfrac{EK}{AE}=\dfrac{AE}{EG}\Rightarrow AE^2=EK.EG\)

b) Ta có : \(\dfrac{AE}{EK}=\dfrac{DE}{EB}\Rightarrow\dfrac{AE}{AK}=\dfrac{DE}{DB}\left(3\right)\)

Tương tự : \(\dfrac{AE}{AG}=\dfrac{BR}{BD}\left(4\right)\)

Cộng theo từng vế của (3) và (4) ta có:

\(\dfrac{AE}{AK}+\dfrac{AE}{AG}=\dfrac{DE}{DB}+\dfrac{BE}{DB}=\dfrac{BD}{BD}=1\)

c) Đặt AB = a, AD = b thì \(\dfrac{BK}{KG}=\dfrac{a}{CG};\dfrac{CK}{b}=\dfrac{CG}{DG}\)

Nhân theo từng vế của hai đẳng thức trên, ta được :

\(\dfrac{BK}{b}=\dfrac{a}{DG}\) suy ra BK . DG = ab không đổi.

A B C D E K

25 tháng 4 2018

tự cao ghê nhen

2 tháng 2 2020

a) Vì \(ABCD\) là hình bình hành (gt).

=> \(AB\) // \(CD\)\(AD\) // \(BC\) (định nghĩa hình bình hành).

Hay \(AB\) // \(DG\)\(AD\) // \(BK.\)

+ Xét \(\Delta ADE\) có:

\(AD\) // \(BK\left(cmt\right)\)

=> \(\frac{AE}{EK}=\frac{DE}{BE}\) (định lí Ta - lét) (1).

+ Xét \(\Delta DEG\) có:

\(AB\) // \(DG\left(cmt\right)\)

=> \(\frac{EG}{AE}=\frac{DE}{BE}\) (định lí Ta - lét) (2).

Từ (1) và (2) => \(\frac{AE}{EK}=\frac{EG}{AE}.\)

=> \(AE.AE=EK.EG\)

=> \(AE^2=EK.EG\)

b) Xét \(\Delta ADE\) có:

\(AD\) // \(BK\left(cmt\right)\)

=> \(\frac{AE}{AK}=\frac{DE}{BD}\) (định lí Ta - lét) (3).

+ Xét \(\Delta DEG\) có:

\(AB\) // \(DG\left(cmt\right)\)

=> \(\frac{AE}{AG}=\frac{BE}{BD}\) (định lí Ta - lét) (4).

Từ (3) và (4) => \(\frac{AE}{AK}+\frac{AE}{AG}=\frac{DE}{BD}+\frac{BE}{BD}\)

=> \(AE.\left(\frac{1}{AK}+\frac{1}{AG}\right)=\frac{DE+BE}{BD}\)

=> \(AE.\left(\frac{1}{AK}+\frac{1}{AG}\right)=\frac{BD}{BD}\)

=> \(AE.\left(\frac{1}{AK}+\frac{1}{AG}\right)=1\)

=> \(\frac{1}{AK}+\frac{1}{AG}=\frac{1}{AE}.\)

Hay \(\frac{1}{AE}=\frac{1}{AK}+\frac{1}{AG}\left(đpcm\right).\)

Chúc bạn học tốt!

1 tháng 2 2018

A B D C E G K a b

a) Vì ABCD là hình bình hành ( gt )

Và K thuộc BC nên

AD // BK Theo hệ quả của định lý Ta-let ta có :

\(\frac{EK}{AE}=\frac{EB}{ED}=\frac{AE}{EG}\Rightarrow\frac{EK}{AE}=\frac{AF}{EG}\Rightarrow AE^2=EK.EG\)

b) Ta có :

\(\frac{AE}{EK}-\frac{DE}{DB};\frac{AE}{AG}=\frac{BE}{BD}\)nên

\(\frac{AE}{AK}+\frac{AE}{AG}-\frac{BE}{BD}+\frac{DE}{DB}-\frac{BD}{BD}-1\Rightarrow\frac{1}{AE}=\frac{1}{AK}+\frac{1}{AG}\)

c) bạn tự làm tiếp mỏi tay quá

6 tháng 6 2019

XVGMy6y.png

Giải nốt bài của Pác Hiếu:3

Đặt \(AB=a',AD=b\)

Áp dụng Đ/L Thales vào tam giác ABK,ta có:

\(\frac{BK}{KC}=\frac{AB}{CG}\Rightarrow\frac{a'}{CG}=\frac{BK}{KC}\left(1\right)\)

Áp dụng Đ/L Thales vào tam giác ADG,ta có:

\(\frac{CG}{DG}=\frac{CK}{AD}\Rightarrow\frac{CG}{DG}=\frac{CK}{b}\left(2\right)\)

Nhân vế theo vế của (1);(2) ta có:

\(\frac{BK}{b}=\frac{a'}{DG}\Rightarrow BK\cdot DG=a'b\)  không đổi.

7 tháng 6 2018

a) Vì ABCD là hình bình hành

\(\rightarrow\)AB // CD hay AB // DG; AD // BC hay AD // BK.

Xét \(\Delta ADE\)\(\Delta BEK\) có AD // BK

\(\rightarrow\dfrac{AE}{EK}=\dfrac{DE}{BE}=\dfrac{AD}{BK}\) (hệ quả định lý Talét) (1)

Xét \(\Delta ABE\)\(\Delta DEG\) có AB // DG

\(\rightarrow\dfrac{EG}{AE}=\dfrac{DE}{BE}=\dfrac{DG}{AB}\) (hệ quả định lý Talét) (2)

Từ (1) và (2) \(\rightarrow\dfrac{AE}{EK}=\dfrac{EG}{AE}\rightarrow AE^2=EK.EG\) (đpcm)

b) Từ (1) \(\rightarrow\dfrac{AE}{AK}=\dfrac{DE}{BD}\) (hệ quả định lý Talét) (3)

Cũng lại có AB // DG

\(\rightarrow\dfrac{AE}{AG}=\dfrac{BE}{BD}\) (hệ quả định lý Talét) (4)

Từ (3) và (4) \(\rightarrow\dfrac{AE}{AK}+\dfrac{AE}{AG}=\dfrac{DE}{BD}+\dfrac{BE}{BD}\)

hay \(AE\left(\dfrac{1}{AK}+\dfrac{1}{AG}\right)=\dfrac{BD}{BD}=1\)

\(\Rightarrow\dfrac{1}{AE}=\dfrac{1}{AK}+\dfrac{1}{AG}\) (đpcm)

c) Từ (1) và (2) \(\rightarrow\dfrac{AD}{BK}=\dfrac{DG}{AB}\)

hay \(AD.AB=BK.DG\)

Vì hình bình hành ABCD không đổi nên AD, AB không đổi
Suy ra tích AD.AB không đổi

\(\Rightarrow\) Tích BK.DG không đổi khi đường thẳng d thay đổi vị trí khi vẫn đi qua A (đpcm)

\(\rightarrow\dfrac{EG}{AE}=\dfrac{DE}{BE}=\dfrac{DG}{AB}\)

7 tháng 6 2018

A B C D E K G d