Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để mình quất cho chứ mấy bạn khác tạm thời chưa quất được
a) Do BK // AD, nên \(\dfrac{EK}{AE}=\dfrac{BE}{ED}\left(1\right)\)
Do AB // DG, nên \(\dfrac{AE}{EG}=\dfrac{BE}{ED}\left(2\right)\)
Từ (1) và (2) suy ra \(\dfrac{EK}{AE}=\dfrac{AE}{EG}\Rightarrow AE^2=EK.EG\)
b) Ta có : \(\dfrac{AE}{EK}=\dfrac{DE}{EB}\Rightarrow\dfrac{AE}{AK}=\dfrac{DE}{DB}\left(3\right)\)
Tương tự : \(\dfrac{AE}{AG}=\dfrac{BR}{BD}\left(4\right)\)
Cộng theo từng vế của (3) và (4) ta có:
\(\dfrac{AE}{AK}+\dfrac{AE}{AG}=\dfrac{DE}{DB}+\dfrac{BE}{DB}=\dfrac{BD}{BD}=1\)
c) Đặt AB = a, AD = b thì \(\dfrac{BK}{KG}=\dfrac{a}{CG};\dfrac{CK}{b}=\dfrac{CG}{DG}\)
Nhân theo từng vế của hai đẳng thức trên, ta được :
\(\dfrac{BK}{b}=\dfrac{a}{DG}\) suy ra BK . DG = ab không đổi.
A B C D E K
a) Vì \(ABCD\) là hình bình hành (gt).
=> \(AB\) // \(CD\) và \(AD\) // \(BC\) (định nghĩa hình bình hành).
Hay \(AB\) // \(DG\) và \(AD\) // \(BK.\)
+ Xét \(\Delta ADE\) có:
\(AD\) // \(BK\left(cmt\right)\)
=> \(\frac{AE}{EK}=\frac{DE}{BE}\) (định lí Ta - lét) (1).
+ Xét \(\Delta DEG\) có:
\(AB\) // \(DG\left(cmt\right)\)
=> \(\frac{EG}{AE}=\frac{DE}{BE}\) (định lí Ta - lét) (2).
Từ (1) và (2) => \(\frac{AE}{EK}=\frac{EG}{AE}.\)
=> \(AE.AE=EK.EG\)
=> \(AE^2=EK.EG\)
b) Xét \(\Delta ADE\) có:
\(AD\) // \(BK\left(cmt\right)\)
=> \(\frac{AE}{AK}=\frac{DE}{BD}\) (định lí Ta - lét) (3).
+ Xét \(\Delta DEG\) có:
\(AB\) // \(DG\left(cmt\right)\)
=> \(\frac{AE}{AG}=\frac{BE}{BD}\) (định lí Ta - lét) (4).
Từ (3) và (4) => \(\frac{AE}{AK}+\frac{AE}{AG}=\frac{DE}{BD}+\frac{BE}{BD}\)
=> \(AE.\left(\frac{1}{AK}+\frac{1}{AG}\right)=\frac{DE+BE}{BD}\)
=> \(AE.\left(\frac{1}{AK}+\frac{1}{AG}\right)=\frac{BD}{BD}\)
=> \(AE.\left(\frac{1}{AK}+\frac{1}{AG}\right)=1\)
=> \(\frac{1}{AK}+\frac{1}{AG}=\frac{1}{AE}.\)
Hay \(\frac{1}{AE}=\frac{1}{AK}+\frac{1}{AG}\left(đpcm\right).\)
Chúc bạn học tốt!
A B D C E G K a b
a) Vì ABCD là hình bình hành ( gt )
Và K thuộc BC nên
AD // BK Theo hệ quả của định lý Ta-let ta có :
\(\frac{EK}{AE}=\frac{EB}{ED}=\frac{AE}{EG}\Rightarrow\frac{EK}{AE}=\frac{AF}{EG}\Rightarrow AE^2=EK.EG\)
b) Ta có :
\(\frac{AE}{EK}-\frac{DE}{DB};\frac{AE}{AG}=\frac{BE}{BD}\)nên
\(\frac{AE}{AK}+\frac{AE}{AG}-\frac{BE}{BD}+\frac{DE}{DB}-\frac{BD}{BD}-1\Rightarrow\frac{1}{AE}=\frac{1}{AK}+\frac{1}{AG}\)
c) bạn tự làm tiếp mỏi tay quá
Giải nốt bài của Pác Hiếu:3
Đặt \(AB=a',AD=b\)
Áp dụng Đ/L Thales vào tam giác ABK,ta có:
\(\frac{BK}{KC}=\frac{AB}{CG}\Rightarrow\frac{a'}{CG}=\frac{BK}{KC}\left(1\right)\)
Áp dụng Đ/L Thales vào tam giác ADG,ta có:
\(\frac{CG}{DG}=\frac{CK}{AD}\Rightarrow\frac{CG}{DG}=\frac{CK}{b}\left(2\right)\)
Nhân vế theo vế của (1);(2) ta có:
\(\frac{BK}{b}=\frac{a'}{DG}\Rightarrow BK\cdot DG=a'b\) không đổi.
a) Vì ABCD là hình bình hành
\(\rightarrow\)AB // CD hay AB // DG; AD // BC hay AD // BK.
Xét \(\Delta ADE\) và \(\Delta BEK\) có AD // BK
\(\rightarrow\dfrac{AE}{EK}=\dfrac{DE}{BE}=\dfrac{AD}{BK}\) (hệ quả định lý Talét) (1)
Xét \(\Delta ABE\) và \(\Delta DEG\) có AB // DG
\(\rightarrow\dfrac{EG}{AE}=\dfrac{DE}{BE}=\dfrac{DG}{AB}\) (hệ quả định lý Talét) (2)
Từ (1) và (2) \(\rightarrow\dfrac{AE}{EK}=\dfrac{EG}{AE}\rightarrow AE^2=EK.EG\) (đpcm)
b) Từ (1) \(\rightarrow\dfrac{AE}{AK}=\dfrac{DE}{BD}\) (hệ quả định lý Talét) (3)
Cũng lại có AB // DG
\(\rightarrow\dfrac{AE}{AG}=\dfrac{BE}{BD}\) (hệ quả định lý Talét) (4)
Từ (3) và (4) \(\rightarrow\dfrac{AE}{AK}+\dfrac{AE}{AG}=\dfrac{DE}{BD}+\dfrac{BE}{BD}\)
hay \(AE\left(\dfrac{1}{AK}+\dfrac{1}{AG}\right)=\dfrac{BD}{BD}=1\)
\(\Rightarrow\dfrac{1}{AE}=\dfrac{1}{AK}+\dfrac{1}{AG}\) (đpcm)
c) Từ (1) và (2) \(\rightarrow\dfrac{AD}{BK}=\dfrac{DG}{AB}\)
hay \(AD.AB=BK.DG\)
Vì hình bình hành ABCD không đổi nên AD, AB không đổi
Suy ra tích AD.AB không đổi
\(\Rightarrow\) Tích BK.DG không đổi khi đường thẳng d thay đổi vị trí khi vẫn đi qua A (đpcm)
\(\rightarrow\dfrac{EG}{AE}=\dfrac{DE}{BE}=\dfrac{DG}{AB}\)
kb với miinhf ko
a) Ta thấy \(\dfrac{EA}{EK}=\dfrac{ED}{EB}=\dfrac{EG}{EA}\) nên \(AE^2=EK.EG\) (đpcm)
b) Ta có \(\dfrac{AE}{AK}+\dfrac{AE}{AG}=\dfrac{DE}{DB}+\dfrac{BE}{BD}=\dfrac{DE+BE}{BD}=1\) nên suy ra \(\dfrac{1}{AE}=\dfrac{1}{AK}+\dfrac{1}{AG}\) (đpcm)