Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Chu kì của dòng điện là T = \(\frac{2\pi}{\omega}=\frac{2\pi}{100\pi}=0.02s.\)
Trong 1 chu kì T = 0.02 sdòng điện đổi chiều 2 lần.
=> trong 1 s dòng điện đổi chiều số lần là 1x2/T = 100 lần.
2. Nếu dòng điện xoay chiều có tần số 60 Hz tức là T = \(\frac{1}{f}=\frac{1}{60}s.\)
=> số lần đổi chièu trong 1 s là \(\frac{1.2}{\frac{1}{60}}=120\) lần.
Đổi chiều dòng điện chính là lúc mà nó đi qua hai điểm A và B. Vì ở các vị trí này vận tốc của nó đổi chiều.
Uk. Mình quên chưa trừ đi điểm đâu tiên nó đứng. câu hỏi là trong 1 s đầu tiên và do vị trí ban đầu của vật ở A (pha =0 từ hàm dao động) nên mình sẽ trừ đi điểm đó. Và có 99 lần đổi chiều.
Mạch chỉ có điện trở thuần thì u cùng pha với i.
Nếu \(u=U_0\cos\left(\omega t+\varphi\right)\)
Thì: \(i=I_0\cos\left(\omega t+\varphi\right)\)
\(\Rightarrow\frac{u}{U_0}=\frac{i}{I_0}\)
\(\Rightarrow\frac{u^2}{U_0^2}+\frac{i^2}{I_0^2}=1\) là sai.
Khi tăng điện dung nên 2,5 lần thì dung kháng giảm 2,5 lần. Cường độ dòng trễ pha hơn hiệu điện thế \(\pi\text{/}4\) nên
\(Z_L-\frac{Z_C}{2,5}=R\)
Trường hợp đầu tiên thì thay đổi C để hiệu điện thế trên C cực đại thì
\(Z_LZ_C=R^2+Z^2_L\)
\(Z_LZ_C=\left(Z_L-\frac{Z_C}{2,5}\right)^2+Z^2_L\)
Giải phương trình bậc 2 ta được
\(Z_C=\frac{5}{4}Z_L\) hoặc \(Z_C=10Z_L\) (loại vì Zl-Zc/2.5=R<0)
\(R=\frac{Z_L}{2}\)
Vẽ giản đồ vecto ta được \(U\) vuông góc với \(U_{RL}\) còn \(U_C\) ứng với cạch huyền
Góc hợp bởi U và I bằng với góc hợp bởi \(U_L\) và \(U_{LR}\)
\(\tan\alpha=\frac{R}{Z_L}=0,5\)
\(\sin\alpha=1\text{/}\sqrt{5}\)
\(U=U_C\sin\alpha=100V\)
\(U_o=U\sqrt{2}=100\sqrt{2}V\)
chọn C
Ta có:
Trong 1 (s) ứng với 50 chu kì mà mỗi chu kì có độ lớn 1 (A) 4 lần
⇒ 50 chu lì có 50.4 = 200 (lần)
T=1f=0,02T=1f=0,02
t =1s = 50T
trị tuyệt đối = 1 -- I = 1 và I = -1
--> có 200 lần
Tần số góc: \(\omega=2\pi f=120\pi\)(rad/s)
Số chỉ ampe kế là giá trị hiệu dụng
\(\Rightarrow I=4,6A\)
\(\Rightarrow I_0=I\sqrt{2}=4,6\sqrt{2}=6,5A\)
Gốc thời gian t = 0 sao cho dòng điện có giá trị lớn nhất \(\Rightarrow\varphi=0\)
Vậy \(i=6,5\cos120\pi t\)(A)
Độ lệch pha giữa u và i là: \(\varphi = \dfrac{\pi}{3}\)
Công suất tiêu thụ của đoạn mạch: \(P=U.I.\cos\varphi=100.1.\cos\dfrac{\pi}{3}=50W\)
Do mạch chỉ có tụ C thì u vuông pha với i, nên ta có:
\(\left(\frac{u}{U_0}\right)^2+\left(\frac{i}{I_0}\right)^2=1\)
\(\Rightarrow\left(\frac{60}{U_0}\right)^2+\left(\frac{\sqrt{3}}{I_0}\right)^2=1\)
\(\left(\frac{60\sqrt{2}}{U_0}\right)^2+\left(\frac{\sqrt{2}}{I_0}\right)^2=1\)
\(\Rightarrow\begin{cases}U_0=120V\\I_0=2A\end{cases}\)
Đáp án A