K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 4 2017

Bài giải:

Tứ giác BCDE có:

BC // DE (vì cùng vuông góc với CD)

BC = DE

nên BCDE là hình chữ nhật

Do đó = 900 , = 900

Suy ra AB và EF cùng nằm trên một đường thẳn

27 tháng 10 2017

Xét tứ giác BEDC có:
BC // ED (vì cùng ⊥⊥ CD)
BC = ED (gt)
Nên BEDC là hình bình hành.
Hình bình hành BEDC có \(\widehat{C}=90^o\) nên BEDC là hình chữ nhật.
\(\Rightarrow\widehat{CBE}=\widehat{BED}=90^o\)
Khi đó \(\widehat{ABC}+\widehat{CBE}=180^o\) \(\Rightarrow\) A, B, E thẳng hàng.
\(\widehat{BED}+\widehat{DEF}=180^o\Rightarrow\) B, E, F thẳng hàng.
Vậy AB và EF cùng nằm trên một đường thẳng.

a: Xét tứ giác AEDF có 

\(\widehat{AED}=\widehat{AFD}=\widehat{FAE}=90^0\)

Do đó: AEDF là hình chữ nhật

b: Ta có: ΔABC vuông tại A

mà AD là đường trung tuyến

nên AD=BC/2=5(cm)

mà AD=EF(AEDF là hình chữ nhật)

nên EF=5cm

c: Để AEDF là hình vuông thì AD là tia phân giác của góc FAE

=>AD là tia phân giác của góc BAC

Vậy: Khi D là chân đường phân giác kẻ A xuống BC thì AEDF là hình vuông