Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ giản đồ véc tơ ta có: \(U_R=\sqrt{U_{AB}^2+U_{MB}^2-2.U_{AB}.U_{MB}.\cos30^0}=\dfrac{U}{\sqrt 3}\)
Công suất của mạch là: \(P=U.I.\cos\varphi\Rightarrow I=\dfrac{2P}{U.\sqrt 3}\)
\(\Rightarrow R = \dfrac{U_R}{I}=\dfrac{U^2}{2P}\)
Ta có: \(\cos\varphi_{AN}=\dfrac{R}{Z_{AN}}\Rightarrow Z_{AN}=\dfrac{2R}{\sqrt 3}\)
Khi nối tắt cuộn dây thì mạch chỉ còn đoạn AN, nên công suất là:
\(P'=I^2.R=\dfrac{U^2}{Z_{AN}^2}.R=\dfrac{U^2}{\dfrac{4R^2}{3}}.R=\dfrac{3U^2}{4R}=\dfrac{3U^2}{4.\dfrac{U^2}{2P}}=\dfrac{3}{2}P\)
Đặt \(Z_L = x, Z_c = y\)
Công suất: \(P = R.I^2 = \frac{RU^2}{R^2 + (x - y)^2} = 210 W\)
Mặt khác: \(f(x) = U_{RC} + U_L = (Z_{RC} + Z_L)I = \frac{U(\sqrt{R^2 + y^2} + x)}{\sqrt{R^2 + x^2 + y^2 - 2xy}}\)
Lấy đạo hàm f(x) và cho \(f'(x) = 0\) suy ra \(x = \sqrt{R^2 + y^2}\)
Khi đó \(f_{max} = 2\sqrt{2}U\) nên suy ra \(y = \frac{3}{4}\sqrt{R^2 + y^2} \Rightarrow y = \frac{3R}{\sqrt{7}}\Rightarrow x = \frac{4R}{\sqrt{7}}\)
\(\Rightarrow \frac{RU^2}{R^2 + (\frac{4R}{\sqrt{7}} - \frac{3R}{\sqrt{7}})^2} = 210 W \Leftrightarrow \frac{7U^2}{8R} = 210 \Rightarrow P_{max} = \frac{U^2}{R} = 240 W\)
Mạch có cộng hưởng điện thì \(w=\frac{1}{\sqrt{LC}}\)
Tần số: \(f_0=\frac{\omega}{2\pi}=\frac{1}{2\pi\sqrt{LC}}\)
Ta áp dụng: \(P=\dfrac{U^2}{R}.\cos^2\varphi\)
Ta có:
\(P_1=\dfrac{U^2}{R}.\cos^2\varphi_1\)
\(P_2=\dfrac{U^2}{R}.\cos^2\varphi_2\)
\(\Rightarrow \dfrac{P_2}{P_1}=(\dfrac{\cos\varphi_2}{\cos\varphi_1})^2=1,6\)
\(\Rightarrow \dfrac{\cos\varphi_2}{\cos\varphi_1}=1,265\)
Suy ra hệ số công suất tăng 26,5%
Chúc bạn thi tốt
Dựa vào giản đồ xét tam giác vuông OAB có
\(\sin60=\frac{Uc}{U_{ }AB}\Rightarrow U_C=100.\sin60=50\sqrt{3}V\Rightarrow Z_C=\frac{U_C}{I}=\frac{50\sqrt{3}}{0.5}=100\sqrt{3}\Omega\)
=> \(C=\frac{1}{Z_C.\omega}\)
\(\cos60=\frac{U_R}{U_{AB}}\Rightarrow U_R=50\Omega\Rightarrow R=\frac{U_R}{I}=100\Omega\)
2. Công suất trên mạch có biểu thức
\(P=I^2R=\frac{U^2}{R^2+\left(Z_L-Z_C\right)^2}.R\\=\frac{U^2}{R^{ }+\frac{\left(Z_L-Z_C\right)^2}{R}}\)
L thay đổi để P max <=> Mẫu Min => áp dụng bất đẳng thức cô-si cho hai số không âm=> \(R=\left|Z_L-Z_C\right|\)
=> \(R=100-40=60\Omega\)
=>
Đáp án D
+ f1 và f2 là hai giá trị của tần số cho cùng công suất tiêu thụ trên mạch
Hz là giá trị của tần số để công suất tiêu thụ trên mạch là cực đại (mạch xảy ra cộng hưởng).
=> P3 >P4