Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì tam giác ABC vuông tại A
=> BAC = 90 độ
=> Vì K là hình chiếu của H trên AB
=> HK vuông góc với AB
=> HKA = 90 độ
=> HKA = BAC = 90 độ
=> KH // AI
=> KHIA là hình thang
Mà I là hình chiếu của H trên AC
=> HIA = 90 độ
=> HIA = BAC = 90 độ
=> KHIA là hình thang cân
b) Vì KHIA là hình thang cân
=> KA = HI
= >KI = HA
Xét tam giác KAI vuông tại A và tam giác HIC vuông tại I có
KA = HI
KI = AH
=> Tam giác KAI = tam giác HIC ( cgv-ch)
=> KIA = ACB ( DPCM)
c) con ý này tớ nội dung chưa học đến thông cảm
a. Xét tam giác HCD cóHN=DN;HM=CM
=> MN là đường trung bình của tam giác HCD => MN//DC
=> DNMC là hình thang
b. Ta có MN là đường trung bình của tam giác HCD => MN=1/2CD
Mà AB=1/2CD => AB =MN
Do MN//CD và AB//CD => AB//MN
Xét tứ giác ABMN có AB//MN; AB=MN
=> ABMN là hình bình hành
c.Ta có MN//CD mà CD vg AD
=> MN vg AD
Xét tam giác ADM có DH và MN là 2 đường cao của tam giác
Mà chúng cắt nhau tại N nên N là trực tâm của tam giác ADM
=> AN là đường cao của tam giác ADM
=> AN vg DM
Do ABMN là hình bình hành nên AN//BM
=> BM vg DM => BMD =90*
\(10^n=11...1\times9+1\)(\(n\)chữ số \(1\))
a) \(b=9a+1+5=9a+6\)
\(ab+1=a\left(9a+6\right)+1=9a^2+6a+1=\left(3a+1\right)^2\)là số chính phương.
b) Số đó có dạng: \(A=11...155...5+1\)(\(n\)chữ số \(1\), \(n\)chữ số \(5\))
\(a=11...1\)(\(n\)chữ số \(1\))
\(a=a\left(9a+1\right)+5a+1=9a^2+a+5a+1=9a^2+6a+1=\left(3a+1\right)^2\)là số chính phương.
ta có
a. \(ab+bc+ac\le a^2+b^2+c^2\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\ge0\) luôn đúng
mà ta lại có :
\(\hept{\begin{cases}a^2< a\left(b+c\right)\\b^2< b\left(a+c\right)\\c^2< c\left(a+b\right)\end{cases}\Rightarrow a^2+b^2+c^2\le2\left(ab+bc+ac\right)}\) vậy ta có điều phải chứng minh.
b. ta có :
\(\hept{\begin{cases}\left(a+b-c\right)\left(a+c-b\right)\le\left(\frac{a+b-c+a+c-b}{2}\right)^2=a^2\\\left(a+b-c\right)\left(b+c-a\right)\le b^2\\\left(a+c-b\right)\left(b+c-a\right)\le c^2\end{cases}}\)
nhân lại ta sẽ có : \(\left(a+b-c\right)\left(a+c-b\right)\left(b+c-a\right)\le abc\) vậy ta có dpcm
Bài 309. Chứng minh rằng ab + 1 là số chính phương với a = 11…12(n chữ số 1),
b = 11…14(n chữ số 1).
Đặt \(a=x+1,b=x+3\)với \(x=11...1\)(\(n\)chữ số \(1\))
\(ab+1=\left(x+1\right)\left(x+3\right)+1=x^2+4x+3+1\)
\(=x^2+4x+4=\left(x+2\right)^2\)
Do đó ta có đpcm.
\(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ac\)
\(\left(a+b-c\right)^2=a^2+b^2+c^2+2ab-2bc-2ac\)
\(\left(a-b-c\right)^2=a^2+b^2+c^2-2ab+2bc-2ac\)
\(\left(x-2y+1\right)^2=x^2+4y^2+1-4xy-4y+2x\)
\(\left(3x+y-2\right)^2=9x^2+y^2+4+6xy-12x-4y\)
a) \(\left(a^2-4\right)\left(a^2+4\right)\)
\(=a^4-8\)
c) \(\left(a-b\right)\left(a+b\right)\left(a^2+b^2\right)\left(a^4+b^4\right)\)
=\(\left(a^2-b^2\right)\left(a^2+b^2\right)=a^4-b^4\)
d) \(\left(a-b+c\right)\left(a+b+c\right)\)
=\(a^2-\left(b+c\right)^2\)
e) \(\left(x+2-y\right)\left(x-2-y\right)\)
=\(x-\left(2-y\right)\)
mik lm tắt có gì sai cho mik xin lỗi
( a2 - 4 )( a2 + 4 ) = a4 - 16
( x3 - 3y )( x3 + 3y ) = x6 - 9y2
( a - b )( a + b )( a2 + b2 )( a4 + b4 ) = ( a2 - b2 )( a2 + b2 )( a4 + b4 ) = ( a4 - b4 )( a4 + b4 ) = a8 - b8
( a - b + c )( a + b + c ) = ( a + c )2 - b2 = a2 - b2 + c2 + 2ac
( x + 2 - y )( x - 2 - y ) = ( x - y )2 - 22 = x2 - 2xy + y2 - 4
a, \(\left(y-2\right)\left(y+2\right)\left(y^2+4\right)-\left(y+3\right)\left(y-3\right)\left(y^2+9\right)\)
\(=\left(y^2-4\right)\left(y^2+4\right)-\left(y^2-9\right)\left(y^2+9\right)\)
\(=y^4-16-y^4+81=65\)
b, \(2\left(x^2-xy+y^2\right)\left(x-y\right)\left(x^2+xy+y^2\right)\left(x+y\right)-2\left(x^6-y^6\right)\)
\(=2\left(x^3-y^3\right)\left(x^3+y^3\right)-2\left(x^6-y^6\right)\)
\(=2\left(x^6-y^6\right)-2\left(x^6-y^6\right)=0\)