K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 2 2017

Ở VTCB lò xo dãn: \(\Delta \ell_0=10cm\)

Tần số góc: \(\omega=\sqrt{\dfrac{g}{\Delta\ell_0}}=10(rad/s)\)

Áp dụng công thức: \(v_0^2=v^2+\dfrac{a^2}{\omega^2}\)

\(\Rightarrow v_0^2=20^2+\dfrac{(200\sqrt 3)^2}{10^2}\)

\(\Rightarrow v_0=40(cm/s)\)

Biên độ dao động: \(A=\dfrac{v_0}{\omega}=4cm\)

Tỉ số giữa lực đàn hồi cực đại và cực tiểu:

\(\dfrac{F_{dhmax}}{F_{dhmin}}=\dfrac{k.(\Delta\ell_0+A)}{k.(\Delta\ell_0-A)}=\dfrac{\Delta\ell_0+A}{\Delta\ell_0-A}=\dfrac{10+4}{10-4}=\dfrac{7}{3}\)

2 tháng 8 2016

Độ biến dạng của lò xo khi vật ở VTCB là: \(\Delta \ell_0=\dfrac{mg}{k}=\dfrac{1.10}{100}=0,1m=10cm\)

\(\omega=\sqrt{\dfrac{k}{m}}=10(rad/s)\)

Áp dụng CT: \(A^2=x^2+\dfrac{v^2}{\omega^2}\)

\(\Rightarrow A^2=2^2+\dfrac{(20\sqrt 3)^2}{10^2}\)

\(\Rightarrow A = 4cm\)

Lực đàn hồi cực đại: 

\(F_{dhmax}=k\Delta\ell_{max}=k(\Delta\ell_0+A)=100.(0,1+0,04)=14(N)\)

Lực đàn hồi cực tiểu:

\(F_{dhmin}=k\Delta\ell_{min}=k(\Delta\ell_0-A)=100.(0,1-0,04)=6(N)\)

12 tháng 5 2017

Chọn A.

30 tháng 12 2014

 

Kéo vật từ vị trí cân bằng xuống dưới 3cm thì thả vật ra => \(A = 3cm.\)

Hòn bi thực hiện 50 dao động toàn phần trong 20 s

=> Thời gian thực hiện 1 dao động toàn phần (chính là chu kỳ T) : \(T = \frac{20}{50} = 0,4 s.\)

\(\Delta l\) là độ dãn của lò xo khi ở vị trí cân bằng. Tại vị trí cân bằng: \(P = F_{đh}\)

=> \(mg = k\Delta l=> T = 2\pi \sqrt{\frac{m}{k}} = 2\pi\sqrt{\frac{\Delta l}{g}}.\)

=> \(\Delta l = \frac{T^2.g}{4\pi^2} = \frac{T^2}{4} = 0,04 m = 4cm.\)

Lực đàn hồi cực tiểu khác 0 => \(\Delta l \geq A\) => Lực đàn hồi cực tiểu là \(F_{đhmin}=k(\Delta l -A).\)

=> \(\frac{F_{đhmax}}{F_{đhmin}} = \frac{k(\Delta l +A)}{k(\Delta l -A)} = \frac{\Delta l +A}{\Delta l -A} = \frac{4+3}{4-3}= 7.\)

31 tháng 5 2018

12 tháng 6 2016

\(f=\frac{1}{2\pi}\sqrt{\frac{g}{\Delta l}}=\frac{1}{2\pi}\sqrt{\frac{\pi^2}{0.16}}=1.25Hz\)

 

27 tháng 7 2016

Ta có :

\(A=l'=\frac{mg}{k}=\frac{g}{\omega^2}\)
\(v_0=A\omega\Rightarrow\frac{g}{\omega}=v_0\Rightarrow\omega=\frac{g}{v_0}\)
\(\Rightarrow A=\frac{g}{\omega^2}=\frac{v^2_0}{g}=6,25\left(cm\right)\)