Một con lắc lò xo gồm vật nhỏ có khối lượng 500 g gắn với lò xo nhẹ có độ cứng 50 N/m. Trong...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 6 2017

Tần số góc: \(\omega = 2\pi/T = 4\pi (rad/s)\)

Độ cứng lò xo: \(k=m.\omega^2=0,4.(4\pi)^2=64(N/m)\)

Lực đàn hồi cực đại tác dụng vào vật: \(F_{dhmax}=k.A = 64.0,08=5,12N\)

25 tháng 4 2019

Tan so goc:=2 π/T=4π (rad/s)

Do cung lo xo:k=m.w2=0,4.(4π)2 =64(N/m)

Luc dan hoi cuc dai tac dung vao vat:

Fd/max=K..A=64.0,08=5,12N

21 tháng 7 2016

Bài này có vẻ lẻ quá bạn.

\(W_t=4W_đ\Rightarrow W_đ=\dfrac{W_t}{4}\)

Cơ năng: \(W=W_đ+W_t=W_t+\dfrac{W_t}{4}=\dfrac{5}{4}W_t\)

\(\Rightarrow \dfrac{1}{2}kA^2=\dfrac{5}{4}.\dfrac{1}{2}kx^2\)

\(\Rightarrow x = \pm\dfrac{2}{\sqrt 5}A\)

M N O α α

Thời gian nhỏ nhất ứng với véc tơ quay từ M đến N.

\(\cos\alpha=\dfrac{2}{\sqrt 5}\)\(\Rightarrow \alpha =26,6^0\)

Thời gian nhỏ nhất là: \(\Delta t=\dfrac{26,6\times 2}{360}.T=\dfrac{26,6\times 2}{360}.\dfrac{2\pi}{20}=0.046s\)

21 tháng 7 2016

bạn ơi cho mình hỏi thời gian nhỏ nhất hay lớn nhất thì cách tính vẫn vậy hả?

24 tháng 7 2016

Ta có:  \(\begin{cases}\Delta l_1=l_1-l_0=\frac{g}{\omega^2_1}\\\Delta l_2=l_2-l_0=\frac{g}{\omega^2_2}\end{cases}\)\(\Rightarrow\frac{\omega^2_2}{\omega^2_1}=\frac{21-l_0}{21,5-l_0}=\frac{1}{1,5}\)\(\Rightarrow l_0=20\left(cm\right)\)

\(\Rightarrow\Delta l_1=0,01\left(m\right)=\frac{g}{\omega^2_1}\Rightarrow\omega_1=10\pi\left(rad/s\right)\)

KQ = 3,2 cm

29 tháng 8 2016

Năng lượng dao động: \(W=\dfrac{1}{2}kA^2=2.10^{-2}\) (1)

Lực đàn hồi cực đại: \(F_{dhmax}=k(\Delta \ell_0+A)=4\) (2)

Lực đàn hồi khi ở VTCB: \(F_{cb}=k.\Delta\ell_0=2\) (3)

Từ (2) và (3) suy ra: \(k.A=2\) (4)

Thế (4) vào (1) suy ra: \(A=2.10^{-2}m=2cm\)

29 tháng 8 2016

Khoảng thời gian giữa 2 lần liên tiếp động ăng bằng thế năng là T/4

\(\Rightarrow \dfrac{T}{4}=\dfrac{\pi}{40}\)

\(\Rightarrow T = \dfrac{\pi}{10}\)

\(\Rightarrow \omega=\dfrac{2\pi}{T}=20(rad/s)\)

Biên độ dao động: \(A=\dfrac{v_{max}}{\omega}=\dfrac{100}{20}=5(cm)\)

Ban đầu, vật qua VTCB theo chiều dương trục toạ độ \(\Rightarrow \varphi=-\dfrac{\pi}{2}\)

Vậy PT dao động là: \(x=5\cos(20.t-\dfrac{\pi}{2})(cm)\)

15 tháng 7 2016

Chọn trục toạ độ có gốc ở VTCB, chiều dương hướng sang phải.

Phương trình dao động tổng quát là: \(x=A\cos(\omega t+\varphi)\)

Theo thứ tự, ta lần lượt tìm \(\omega;A;\varphi\)

\(\omega=\sqrt{\dfrac{k}{m}}=20\sqrt 2(rad/s)\)

+ Biên độ A: \(A^2=x^2+\dfrac{v^2}{\omega^2}=3^2+\dfrac{(80\sqrt 2)^2}{(20\sqrt 2)^2}\)

\(\Rightarrow A = 5cm\)

+ Ban đầu ta có \(x_0=3cm\)\(v_0=-80\sqrt 2\) (cm/s) (do ta đẩy quả cầu về VTCB ngược chiều dương trục toạ độ)

\(\cos\varphi=\dfrac{x_0}{A}=\dfrac{3}{5}\); có \(v_0<0 \) nên \(\varphi > 0\)

\(\Rightarrow \varphi \approx0,3\pi(rad)\)

Vậy PT dao động: \(x=5\cos(20\sqrt 2+0,3\pi)(cm)\)

18 tháng 7 2020

\(x_1^2+\frac{v_1^2}{\omega^2}=x_2^2+\frac{v_2^2}{\omega^2}\Rightarrow\omega=\sqrt{\frac{v_2^2-v_1^2}{x_1^2-x_2^2}}=10\pi\)

Do pt của 4 ngoại lực có biên độ bằng nhau, để con lắc dao động với biên độ nhỏ nhất trong giai đoạn ổn định thì \(\left|\omega-\omega_F\right|\) là lớn nhất

\(\Rightarrow\) Đáp án B đúng (không chắc lắm :( )

22 tháng 6 2019

Cái này hình như bạn viết nhầm đơn vị của g phải là m/s2

Khi lò xo có chiều dài l=28 thì vận tốc bằng 0=> vật ở vị trí biên âm

△l=|△l0-A|=2cm

Fd=k|△l|=2N

=>k=100N/m

△l0=\(\dfrac{m.g}{k}\)=0,02(m)=2cm

=>A=4cm

W=1/2.k.A2=0,08j

15 tháng 9 2021

Sao tìm được A vậy 

6 tháng 8 2016

Áp dụng công thức tính năng lượng dao động của con lắc đơn ta có:
\(W_1 = \dfrac{1}{2}.m_1.g.\ell_1. \alpha_1 ^{2}\)\(W_2 = \dfrac{1}{2}.m_2.g.\ell_2. \alpha_2 ^{2}\)
Theo giả thiết hai con lắc đơn có cùng năng lượng

\(\Rightarrow \dfrac{1}{2}.m_1.g.\ell_1. \alpha_1 ^{2}=\dfrac{1}{2}.m_2.g.\ell_2. \alpha_2 ^{2}\)
Do khối lượng hai con lắc bằng nhau nên:

\(\ell_1.\alpha_1 ^{2} = \ell_2. \alpha_2 ^{2}\)

\(\Rightarrow \alpha_2 = \alpha_1 .\sqrt{l1/l2}\).

Thay số ta tìm được: \(\alpha_2 = 5,625^0\)

7 tháng 8 2016

Thanks nhìu