Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gia tốc cực đại: \(a_{max}=\omega^2.A=(2\pi.2,5)^2.0,05=12,3m/s^2\)
Ta có :
\(A=l'=\frac{mg}{k}=\frac{g}{\omega^2}\)
\(v_0=A\omega\Rightarrow\frac{g}{\omega}=v_0\Rightarrow\omega=\frac{g}{v_0}\)
\(\Rightarrow A=\frac{g}{\omega^2}=\frac{v^2_0}{g}=6,25\left(cm\right)\)
\(A=l'=\frac{mg}{k}=\frac{g}{\omega^2}\)
\(v_0=A\omega\Rightarrow\frac{g}{\omega}=v_0\Rightarrow\omega=\frac{g}{v_0}\)
\(\Rightarrow A=\frac{g}{\omega^2}=\frac{v^2_0}{g}=6,25\left(cm\right)\)
Ta có: \(\omega=2\pi f=5\pi\) ; A = 4cm
\(\omega=\sqrt{\frac{K}{m}}=\sqrt{\frac{K}{0,1}}\Rightarrow K=25\)
\(\Delta l_o=\frac{mg}{k}=\frac{0,1.10}{25}=4cm\)
Áp dụng CT: \(F_{đh}max=K\left(\Delta l_o+A\right)\) và \(F_{đh}min=k\left(\Delta l_o-A\right)\)
Suy ra, Fmax = 2 N và Fmin = 0 N
Theo mình là đáp án khác.
T=0.4s => denta l=4 cm
thời gian dãn gấp 2 lần thời gian nén nên tnen = T/3
nếu chọn chiều (+) hướng xuống thì vị trí mà lo xo dãn là từ 2pi/3 -> 4pi/3
nên A = 8 cm
Chọn gốc thế năng tại VT dây thẳng đứng.
Áp dụng định luật bảo toàn năng lượng ta có:
\(W=mgl\left(1-\cos\alpha_0\right)=W_d+W_t=W_d+mgl\left(1-\cos\alpha\right)\)
\(\Rightarrow W_d=mgl\left(1-\cos\alpha_0-1+\cos\alpha\right)=mgl\left(\frac{\alpha^2_0}{2}-\frac{\alpha^2}{2}\right)\)
\(=0,1.10.0,8.\left(\frac{\left(\frac{8}{180}\pi\right)^2-\left(\frac{4}{180}\pi\right)^2}{2}\right)\approx5,84\left(mJ\right)\)
Biên độ dao động: $A = 4cm$
Tỉ số giữa lực đàn hồi cực đại và cực tiểu:
\(\dfrac{F_{max}}{F_{min}}=\dfrac{k(\Delta \ell_0+A)}{k(\Delta\ell_0-A)}=\dfrac{\Delta\ell_0+4}{\Delta\ell_0-4}=2\)
\(\Rightarrow \Delta\ell_0=12cm\)
Tần số dao động:
\(f=\dfrac{\omega}{2\pi}=\dfrac{1}{2\pi}\sqrt{\dfrac{g}{\Delta\ell_0}}=\dfrac{1}{2\pi}\sqrt{\dfrac{10}{0,12}}=1,44(hz)\)
Áp dụng: \(a = -\omega^2 x =-(2\pi)^2.3 = - 120\ cm/s^2 \)
Động năng cực đại của con lắc E = 0,5m(2ω)2A2 = 2mω2A2.
Đáp án D