K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

Để quả bóng ở độ cao trên 5m so với mặt đất thì:

\(\begin{array}{l}h(t) > 5\\ \Rightarrow  - 4,9{t^2} + 20t + 1 > 5\\ \Rightarrow  - 4,9{t^2} + 20t - 4 > 0\end{array}\)

Đặt \(f(t) =  - 4,9{t^2} + 20t - 4\)có \(\Delta ' = b{'^2} - ac = {10^2} - ( - 4,9).( - 4) = 80,4 > 0\)nên \(f(t)\)có 2 nghiệm: \(\begin{array}{l}{t_1} = \frac{{ - b' + \sqrt {\Delta '} }}{a} = \frac{{ - 10 + \sqrt {80,4} }}{{ - 4,9}} = \frac{{10 - \sqrt {80,4} }}{{4,9}}\\{t_2} = \frac{{ - b' - \sqrt {\Delta '} }}{a} = \frac{{ - 10 - \sqrt {80,4} }}{{ - 4,9}} = \frac{{10 + \sqrt {80,4} }}{{4,9}}\end{array}\)

Mặt khác \(a =  - 4,9 < 0\), do đó ta có bảng xét dấu sau

Do đó để \(h(t) > 5\)thì \(t \in \left( {\frac{{10 - \sqrt {80,4} }}{{4,9}};\frac{{10 + \sqrt {80,4} }}{{4,9}}} \right)\)

Vậy để quả bóng sẽ ở độ cao trên 5m so với mặt đất thì \(t \in \left( {\frac{{10 - \sqrt {80,4} }}{{4,9}};\frac{{10 + \sqrt {80,4} }}{{4,9}}} \right)\)

11 tháng 2 2022

a. Ta có: \(sin\left(30t\right)\le1\)

\(\Leftrightarrow3sin\left(30t\right)\le3\)

\(\Leftrightarrow5+3sin\left(30t\right)\le8\)

Vậy độ sâu mực nước lớn nhất tại bến cảng đó là 8(m)

b. Ta có: \(8\ge h\ge6,5\) \(\Leftrightarrow8\ge5+3sin\left(30t\right)\ge6,5\)\(\Leftrightarrow3\ge3sin\left(30t\right)\ge1,5\)

\(\Leftrightarrow1\ge sin\left(30t\right)\ge0,5\)\(\Leftrightarrow\dfrac{\pi}{2}\ge30t\ge\dfrac{\pi}{6}\)\(\Leftrightarrow\dfrac{\pi}{60}\ge t\ge\dfrac{\pi}{180}\)

Vậy sau giữa trưa từ \(\dfrac{\pi}{180}\) (giờ) đến \(\dfrac{\pi}{60}\)(giờ) thuyền có thể vào bến cảng

HQ
Hà Quang Minh
Giáo viên
26 tháng 9 2023

Để quả bóng có thể ném được qua lưới cao 2 m thì \(y = f\left( x \right) =  - 0,03{x^2} + 0,4x + 1,5 > 2\)

\( \Rightarrow f\left( x \right) =  - 0,03{x^2} + 0,4x - 0,5 > 0\)

Xét tam thức \(f\left( x \right) =  - 0,03{x^2} + 0,4x - 0,5\) có \(\Delta  = 0,1 > 0\), có hai nghiệm phân biệt là \({x_1} \simeq 1,4;{x_2} \simeq 11,9\) và có \(a =  - 0,03 < 0\)

Ta có bảng xét dấu như sau

Vậy để quả bóng có thể ném được qua lưới cao 2 m, người ta phải đứng cách lưới từ 1,4 cho đến 11,9 mét

2 tháng 5 2017

Tập xác định của cả ba hàm số y = f(x), y = g(x) và y = h(x) là:

    D = {1998, 1999, 2000, 2001, 2002}

1 tháng 10 2019

f(2002) = 620000 (con)

    g(1999) = 380000 (con)

    h(2000) = 100000 (con)

    Năm 2002 sản lượng của trang trại là 620 000 con vịt ; năm 1999 sản lượng là 380 000 con gà ; năm 2000 trang trại có sản lượng là 100 000 con ngan lai.

3 tháng 5 2017

a) Txđ: D =\(\left[1998;+\infty\right]\)
b) \(f\left(2002\right)=620000\) con.
\(g\left(1999\right)=380000\) con.
\(h\left(2000\right)=100000\) con.
c) \(h\left(1999\right)=30000\) con; \(h\left(2002\right)=210000\).
\(h\left(2002\right)-h\left(1999\right)=210000-30000=180000\).
Ý nghĩa: Hiệu \(h\left(2002\right)-h\left(1999\right)\) thể hiện sự tăng trưởng sản lượng ngan qua giai đoạn 1999 - 2002.

14 tháng 5 2016

       Gọi thời gian chiếc thuyền đi từ A đến B là x

             Thời gian chiếc thuyền đi ngược từ B về A là y. 
    Ta có: 4,5km=\(\frac{1}{2}\)của 9km 
Do đó thời gian chiếc thuyền đi ngược từ B về A gấp đôi thời gian chiếc thuyền đi từ A đến B. 
                        => y = 2x 
        Mà x + y = 1h45p= 105 phút 
  Thay y = 2x ta có 
           x+2x=3x=105 phút 
           x=105 phút : 3 
           x=35 phút =\(\frac{7}{12}\) giờ 
Vậy độ dài quãng đường là:

        \(9x\frac{7}{12}=5,25\left(km\right)\)  
             Đáp số: 5.25 km 

10 tháng 3 2017

Cô gợi ý em quãng đường ABdài là 5,25 km