Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
> O x M 7 -7 π/3
Quỹ đạo chuyển động là 14 cm → A = 7 cm.
Tại thời điểm ${t_0}$ chất điểm ở vị trí M có pha ban đầu là –π/3; độ lớn gia tốc cực đại tại biên.
→ từ M đến biên lần thứ 3 thì ∆φ = π/3 + 2π = 7π/3 rad.
→ t = ∆φ/ω = 7/6 s và s = 3,5 + 28 = 31,5 cm
→ v = s/t = 27 cm/s.
ta có:f=4p/2p=2(hz)
lamda=v/f=50/2=25(cm)
vì M cùng pha với O nên :2p*d1/lamda=2p suy ra d1=25(cm)
vì N ngược pha với O nên :2p*d2/lamda=p suy ra d2 =12.5(cm)
1,vật qua vị trí x=-5 => thay x vào phương trình dao động .
2,T=0,4 s=> t=1s=2,5 T=2T+0,5T. 2chu kì sẽ đi qua x=1 bốn lần,thêm một nửa chu kì nữa được 1 lần.tổng cộng là 5 lần. Vẽ đường tròn ra nha cậu
3, denta t= 4,625-1=3,625 s=3,625 T=3T+1/2 T+1/8 T
tại t1=1s,x=căn 2.
quãng đường đi được trong 3,625 T=3. 4A+2A+A căn 2/2 .Vì một ch kì vật đi được 4A,cậu cũng vè đường tròn ra là thấy
S=29,414 cm ,v=S/t= 29,414/3,625=8,11 cm/s.
4.Tự làm nốt nhé,cứ ốp vào dường tròn là ra ngay.
Bạn tham khảo hai bài tương tự này nhé:
Câu hỏi của Nguyễn Khánh Quỳnh - Học và thi online với HOC24
Câu hỏi của Hue Le - Học và thi online với HOC24
Gọi khoảng cách giữa hai bến sông là S = AB, giả sử nước chảy từ A đến B với vận tốc u ( u < 3km/h )
- Thời gian thuyền chuyển động từ A đến B là: t1 = \(\frac{S}{v_1+u}\)
- Thời gian chuyển động của ca nô là: t2 = \(\frac{2S}{v_2-u}+\frac{2S}{v_2+u}\)
Theo bài ra: t1 = t2 \(\Leftrightarrow\frac{S}{v_1+u}=\frac{2S}{v_2-u}+\frac{2S}{v_2+u}\)
Hay: \(\frac{1}{v_1+u}=\frac{2}{v_2-u}+\frac{2}{v_2+u}\Rightarrow\)\(u^2+4v_2u+4v_1v_2-v^2_2=0\) \(\left(1\right)\)
Giải phương trình (1) ta được: \(u\approx\text{ - 0,506 km/h }\)
Vậy nước sông chảy theo hướng BA với vận tốc gần bằng 0,506 km/h
b. Nếu nước chảy nhanh hơn thì thời gian ca nô đi về về B (với quãng đường như câu a) có thay đổi không? vì sao?
uM=Acoss(wt-2pi d/ lamda) = A cos (wt - 2pi/3)
Khi t=T/3 thay vào ta đc: uM = A cos (2pi/3 - 2pi/2) = A = 5
Pt của M: uM = 5 cos (wt - 2pi/3)
Ta thấy trên nửa đường thẳng thẳng kẻ từ A và vuông góc với AB có 4 điểm theo thứ tự M, N, P, Q dao động với biên độ cực đại, nên trên AB có 9 điểm dao động với biên độ cực đai với - 4 ≤ k ≤ 4 ( d2 – d1 = kλ)
A B x M N P Q
Cực đại tại M, N, P, Q ứng với k = 1; 2; 3; 4
Đặt AB = a
Tại C trên Ax là điểm dao động với biên độ cực đại:
CB – CA = kλ (*)
CB2 – CA2 = a2 → (CB + CA) (CB – CA) = a2
CB + CA = \(\dfrac{a^2}{k.\lambda}\)(**)
Từ (*) và (**) suy ra \(CA=\dfrac{a^2}{2k.\lambda}-\dfrac{k}{2}\lambda\)
Tại M: ứng với k = 1: MA = \(\dfrac{a^2}{2\lambda}\)- 0,5λ (1)
Tại N: ứng với k = 2: NA = \(\dfrac{a^2}{4\lambda}\)- λ (2)
Tại P: ứng với k = 3: PA = \(\dfrac{a^2}{6\lambda}\) - 1,5 λ (3)
Tại Q: ứng với k = 4: QA = \(\dfrac{a^2}{8\lambda}\) - 2 λ (4)
Lấy (1) – (2) : MN = MA – NA = \(\dfrac{a^2}{4\lambda}\) + 0,5λ = 22,25 cm (5)
Lấy (2) – (3) : NP = NA – PA = \(\dfrac{a^2}{12\lambda}\) + 0,5λ = 8,75 cm (6)
Lấy (5) - (6) → \(\dfrac{a^2}{\lambda}\) = 81 (cm) và λ = 4 cm .
Thế vào (4) → QA = 2,125 cm.
thầy có thể giải thích e chổ CB-CA= Klamda . Với tại s CB= K/2 lamda k thầy?
Chọn A.