Một chất điểm dao động điều hòa theo phương trình.

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 2 2018

Đáp án A

+ Ta có:

+ Tại thời điểm t = 0,1s thì:      Vật đang ở vị trí  và đi theo chiều dương, để đi hết khoảng thời gian còn lại là   thì vật đi được quãng đường:

6 tháng 8 2015

\(\omega=\frac{2\pi}{T}=2\pi\)(rad/s)

Vận tốc cực đại \(v_{max}=\omega A=2\pi.5=10\pi\)(cm/s)

Vì vận tốc là đại lượng biến thiên điều hòa theo thời gian, nên ta khảo sát nó bằng véc tơ quay.

10π v 5π M N -10π O

Tại thời điểm t, trạng thái của vận tốc ứng với véc tơ OM, sau 1/6 s = 1/6 T, véc tơ quay: 1/6.360 = 600

Khi đó, trạng thái của vận tốc ứng với véc tơ ON --> Vận tốc đạt giá trị cực đại là: \(10\pi\) (cm/s)

Đáp án B.

7 tháng 8 2015

Phynit: cam on ban nhieu nhe :)

 

28 tháng 7 2016

Góc quét được từ t1 \(\rightarrow\) t2
\(\Delta\vartheta=2\pi+\frac{5}{6}\pi\)
\(\Rightarrow S=4X5+\frac{5}{2}+5=27,5\)

chọn C

15 tháng 6 2016

Hỏi đáp Vật lýchọn A

1 tháng 10 2015

Áp dụng công thức: \(A^2 = x^2 +\frac{v^2}{\omega^2} \) \(\Rightarrow A^2 = 3^2 +\frac{(60\sqrt3)^2}{\omega^2} = (3\sqrt2)^2 +\frac{(60\sqrt2)^2}{\omega^2} \)

Giải hệ trên ta được \(\omega = 20rad/s; \ A =6cm\)

27 tháng 6 2017

Gọi phương trình dao động là: \(x=A\cos\omega t\)

PT vận tốc là: \(v=x'=-\omega A\sin\omega t\)

Ta có: \(A\cos\omega t_0=2\)

Cần tìm:

\(v=-\omega A\sin\omega (t_0+0,5)\)

\(=-\omega A\sin(\omega .t_0+\dfrac{2\pi}{2}.0,5)\)

\(=-\omega A\sin(\omega .t_0+\dfrac{\pi}{2})\)

\(=-\dfrac{2\pi}{2} A\cos\omega t_0\)

\(=-\dfrac{2\pi}{2}.2=-2\pi(cm/s)\)

Chọn D

23 tháng 8 2016

Ta có \lambda = \frac{9}{f} = 2
Và \frac{- S_1S_2}{\lambda } < k < \frac{ S_1S_2}{\lambda } (k \epsilon N) => có 9 điểm

31 tháng 5 2017

Áp dụng công thức: \(A^2=x^2+\dfrac{v^2}{\omega^2}\)

\(\Rightarrow A^2=2,5^2+\dfrac{(50\sqrt 3)^2}{\omega^2}=(2,5\sqrt 3)^2+\dfrac{50^2}{\omega^2}\)

\(\Rightarrow \omega = 20(rad/s)\)

\(A=5cm\)

11 tháng 9 2015

Bước sóng \(\lambda = v/f = 1/25 = 0.04m = 4cm.\)

Độ lệch pha giữa hai nguồn sóng là \(\triangle\varphi= \varphi_2-\varphi_1 = \frac{5\pi}{6}+\frac{\pi}{6} = \pi.\)

Biên độ sóng tại điểm M là \( A_M = |2a\cos\pi(\frac{10-50}{4}-\frac{\pi}{2\pi})| =0.\)