Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Lập hai pt độc lập với thời gian:
\(A^2=x_1^2+\left(\frac{v_1}{\omega}\right)^2\)
\(A^2=x_2^2+\left(\frac{v_2}{\omega}\right)^2\)
cho hai VP bằng nhau, giải pt được ω=20 (rad/s)
Thay vào 1 trong 2 pt đầu được A=6(cm)
Chúc bạn học tốt! :D
![](https://rs.olm.vn/images/avt/0.png?1311)
Vị trí cực đại giao thoa với hai nguồn cùng pha thỏa mãn điều kiện: \(d_1-d_2=k\lambda\)
Đường cực đại thứ nhất đi qua M1 thỏa mãn: \(d_1-d_2=1.\lambda=16cm\)(1)
Đường cực đại thứ 5 đi qua M2 thỏa mãn: \(d_1'-d_2'=5\lambda=24cm\)(2)
Lấy (2) - (1) vế với vế ta được: \(4\lambda=8\Leftrightarrow\lambda=2cm\)
Vận tốc: \(v=\lambda.f=2.10=20\)(cm/s)
Bạn sử dụng điều kiện cực đại giao thoa của 2 dao động cùng pha.
![](https://rs.olm.vn/images/avt/0.png?1311)
Biên độ sóng tại một điểm M bất kì cách nguồn O1, O2 lần lượt các đoạn d1, d2 là
\( A_M = |2a\cos\pi(\frac{d_2-d_1}{\lambda}+\frac{\triangle\varphi}{2\pi})|\)
\(\triangle\varphi = 0\)
Biên độ tại điểm có cực đại giao thoa \(A_{Mmax} = A_0=> 2a =2cm.\)
Để biên độ sóng tại M
\(A_M = 1,2 cm=> |2a\cos\pi(\frac{d_2-d_1}{\lambda}-\frac{\triangle\varphi}{2\pi})| = 1,2\)
=> \(\cos \pi(\frac{d_2-d_1}{\lambda})= 0,6.\)
\(=> \pi.(\frac{d_2-d_1}{\lambda}) = \frac{53}{180}.\pi+k2\pi\)
=> \(d_2-d_1 = (2k + 0,29)\lambda\ \ (1).\)
M nằm trên đoạn thẳng \(O_1O_2\) tức là (không được tính hai nguồn)
\(-O_1O_2 < d_2-d_1 < O_1O_2\)
Thay (1) vào ta được
\(-O_1O_2 < (2k+0,29)\lambda < O_1O_2\)
=> \(-1,745 < k < 1,455\)
=> \(k = -1,0,1.\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Nhận xét: Thay t =0 vào phương trình vận tốc: v = 4\(\pi\) = vmax
Do vận tốc đạt cực đại, nên vật qua VTCB, nên x = 0.
ta có PT chuẩn: x=Acos(wt+fi); v=-wAsin(wt+fi) => v=wAcos(wt+fi) cụ thể v=4picos(2pit+fi0) hay v=4picos2pit => A=2 mà fi=0 => x được chọn là x=2
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\omega=\frac{2\pi}{T}=2\pi\)(rad/s)
Vận tốc cực đại \(v_{max}=\omega A=2\pi.5=10\pi\)(cm/s)
Vì vận tốc là đại lượng biến thiên điều hòa theo thời gian, nên ta khảo sát nó bằng véc tơ quay.
10π v 5π M N -10π O
Tại thời điểm t, trạng thái của vận tốc ứng với véc tơ OM, sau 1/6 s = 1/6 T, véc tơ quay: 1/6.360 = 600
Khi đó, trạng thái của vận tốc ứng với véc tơ ON --> Vận tốc đạt giá trị cực đại là: \(10\pi\) (cm/s)
Đáp án B.
![](https://rs.olm.vn/images/avt/0.png?1311)
Tốc độ trung bình = quãng đường / thời gian.
Quãng đường: \(S=A+\dfrac{A}{2}=\dfrac{3A}{2}\)
Biểu diễn dao động bằng véc tơ quay, véc tơ quay được góc là: 90 + 30 = 1200.
Thời gian tương ứng: \(t=\dfrac{120}{360}T=\dfrac{T}{3}\)
Tốc độ trung bình: \(v_{TB}=\dfrac{S}{t}=\dfrac{9A}{2T}=\dfrac{9A.\omega}{2.2\pi}=\dfrac{9v_{max}}{4\pi}\)
Đáp án A
Tại thời điểm ban đầu t = 0 → vận tốc cực đại → vật qua VTCB