Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Chu kì: T = 1s.
Thời gian: t = 2,4s = 2T + 0,4T.
+ Trong thời gian 2T quãng đường đi được là: S1 = 2.4A = 2.4.5 = 40cm.
+ Trong thời gian 0,4T véc tơ quay đã quay một góc 0,4. 360 = 1440
5 -5 -2,5 M1 M2 120 24
Quãng đường vật đã đi trong thời gian này: S2 = 2,5 + 5 + (5 - 5.cos240) = 7,9cm
Vậy tổng quãng đường vật đi: 40 + 7,9 = 47,9cm.

T=1s.
Trong thời gian 0,5s = T/2 vật đi quãng đường là 2.A = 2.8=16cm.

Góc mà vật quay được là \(\varphi = t\omega = 0.157.10 = 1,57 (rad) = 0.5\pi. (rad)\)
-π/3 M N a π/6 A/2
Như vậy quãng đường đi được là hình chiếu của cung \(MaN\) tương ứng trên trục 0x nằm ngang tức là
\(S = (A- \frac{A}{2})+(A- \frac{A\sqrt{3}}{2}) = A (2-\frac{1}{2} - \frac{\sqrt{3}}{2}) = 1,9cm.\)
chon D.

Mỗi câu hỏi bạn nên hỏi 1 bài thôi để tiện trao đổi nhé.
Biểu diễn dao động bằng véc tơ quay ta có:
M x 2 1 O N
Để vật qua li độ 1 cm theo chiều dương thì véc tơ quay qua N.
Trong giây đầu tiên, véc tơ quay đã quay 1 góc là: \(5\pi\), ứng với 2,5 vòng quay.
Xuất phát từ M ta thấy véc tơ quay quay đc 2,5 vòng thì nó qua N 3 lần do vậy trong giây đầu tiên, vật qua li độ 1cm theo chiều dương 3 lần.
Bạn xem thêm lí thuyết phần này ở đây nhé
Phương pháp véc tơ quay và ứng dụng | Học trực tuyến
Bài 1 :
T = 2π / ω = 0.4 s
Vật thực hiện được 2 chu kì và chuyển động thêm trong 0.2 s (T/2 ) nữa
1 chu kì vật qua vị trí có li độ x=2cm theo chiều dương được "1 " lần
⇒ 2 ________________________________________... lần
phần lẻ 0.2s (T/2) , (góc quét là π ) (tức là chất điểm CĐ tròn đều đến vị trí ban đầu và góc bán kính quét thêm π (rad) nữa, vị trí lúc nầy:
x = 1 + 2cos(-π/2 + π ) = 1, (vận tốc dương) vật qua vị trí có li độ x=2cm theo chiều dương thêm 1 lần nữa
(từ VT ban đầu (vị tri +1 cm ) –> biên dương , về vị trí có ly độ x = +1 cm
do đó trong giây đầu tiên kể từ lúc t=0 vật qua vị trí có li độ x=2cm theo chiều dương được 3 lần
Chọn A

Vận tốc cực đại: \(v_{max}=\sqrt{\dfrac{2W_{đmax}}{m}}=\sqrt{\dfrac{2.0,1}{0,2}}=1m/s\)
Khi \(W_{đ1}=0,025J\) \(\Rightarrow v_{1}=\sqrt{\dfrac{2W_{đ1}}{m}}=\sqrt{\dfrac{2.0,025}{0,2}}=0,5m/s\)
Khi \(W_{đ2}=0,75J\) \(\Rightarrow v_{1}=\sqrt{\dfrac{2W_{đ1}}{m}}=\sqrt{\dfrac{2.0,075}{0,2}}=0,5\sqrt 3m/s\)
Vì vận tốc biến thiên điều hoà theo thời gian, nên ta biểu diễn bằng véc tơ quay:
v O 1 0,5 0,5√3 30 0
Từ giản đồ véc tơ ta suy ra được: \(\Delta t=\dfrac{30}{360}T=\dfrac{\pi}{20}\)
\(\Rightarrow T =\dfrac{3\pi}{5}s\)
\(\Rightarrow \omega = \dfrac{2\pi}{T}=\dfrac{10}{3}\) (rad/s)
Biên độ: \(A=\dfrac{v_{max}}{\omega}=0,3m = 30cm\)
Đáp án C
Phương pháp: Sử dụng đường tròn lượng giác
Cách giải:
Theo bài ra: PTDĐ của vật x = A cos πt + π 3
→ Chu kì dao động
Từ đường tròn tính được quãng đường vật đi được sau T/3 là: s = A/2 + A = 30cm → A = 20cm