\(s=f\left(t\right)=\dfrac{1}{3}t^3-t^2+4t+5\) ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 4 2017

Trả lời:

a) Vận tốc của chuyển động khi t = 2 (s).

Ta có:

v=dsdt=S′=3t2−6t−9v=dsdt=S′=3t2−6t−9

Khi t = 2(s) ⇒ 3.22 – 6.22 – 9 = -9 m/s.

b) Gia tốc của chuyển động khi t = 3(s). Ta có:

a=dvdt=v′=6t−6a=dvdt=v′=6t−6

Ở t = 3(s) ⇒ a = 6.3 – 6 = 12 m/s2

c) Ta có: v = 3t2 – 6t – 9

Tại thời điểm vận tốc triệt tiêu:

v=0⇔3t2−6t−9=0⇔t2−2t−3=0⇔[t=−1(l)t=3(s)v=0⇔3t2−6t−9=0⇔t2−2t−3=0⇔[t=−1(l)t=3(s)

Gia tốc: a = 6t – 6.

Khi t = 3s ⇒ a = 6.3 – 6 = 12 m/s2

d) Ta đã có a = 6t – 6.

Khi a = 0 ⇔ 6t – 6= 0 ⇔ t = 1(s)

Lại có: v = 3t2 – 6t – 9

Khi t = 1(s) ⇒ v = 3.12 – 6.1 – 9 = -12 m/s



2 tháng 5 2017

câu b.. v'=6t-6 là s v bạn??

HQ
Hà Quang Minh
Giáo viên
14 tháng 8 2023

a, Phương trình vận tốc là: v(t) = \(3t^2-6t+8\)

Phương trình gia tốc là: a(t) = \(6t-6\)

Thay t = 3 vào phương trình, ta được:

s = \(3^3-3\cdot3^3+8\cdot3+1=25\left(m\right)\)

\(v=3\cdot3^2-6\cdot3+8=17\left(m/s\right)\\ s=6\cdot3-6=12\left(m/s^2\right)\)

b, Theo đề bài, ta có:

\(t^3-3t^2+8t+1=7\\ \Leftrightarrow t^3-3t^2+8t-6=0\\ \Leftrightarrow\left(t-1\right)\left(t^2-2t+6\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}t=1\\t^2-2t+6=0\left(vô.nghiệm\right)\end{matrix}\right.\)

Khi t = 1(s), chất điểm đi được 7m

\(v=3\cdot1^2-6\cdot1+8=5\left(m/s\right)\\ a=6\cdot1-6=0\left(m/s^2\right)\)

\(v\left(t\right)=s'\left(t\right)=2\cdot2t+\dfrac{1}{2}\cdot4t^3=2t^3+4t\)

\(a\left(t\right)=2\cdot3t^2+4=6t^2+4\)

\(a\left(4\right)=6\cdot4^2+4=100\)(m/s2)

5 tháng 7 2019

Chọn B.

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

Vận tốc tức thời của chuyển động tại \(t = 2\) là:

\(\begin{array}{l}v\left( 2 \right) = s'\left( 2 \right) = \mathop {\lim }\limits_{t \to 2} \frac{{s\left( t \right) - s\left( 2 \right)}}{{t - 2}} = \mathop {\lim }\limits_{t \to 2} \frac{{\left( {4{t^3} + 6t + 2} \right) - \left( {{{4.2}^3} + 6.2 + 2} \right)}}{{t - 2}}\\ = \mathop {\lim }\limits_{t \to 2} \frac{{4{t^3} + 6t + 2 - 46}}{{t - 2}} = \mathop {\lim }\limits_{t \to 2} \frac{{4{t^3} + 6t - 44}}{{t - 2}} = \mathop {\lim }\limits_{t \to 2} \frac{{2\left( {t - 2} \right)\left( {2{t^2} + 4t + 11} \right)}}{{t - 2}}\\ = \mathop {\lim }\limits_{t \to 2} 2\left( {2{t^2} + 4t + 11} \right) = 2\left( {{{2.2}^2} + 4.2 + 11} \right) = 54\end{array}\)

Vậy vận tốc tức thời của chuyển động lúc \(t = 2\) là: \(v\left( 2 \right) = 54\left( {m/s} \right)\)

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

Vận tốc tại thời điểm t là \(v\left( t \right) = s'\left( t \right) = 0,5.2\pi \cos \left( {2\pi t + \frac{\pi }{5}} \right) = \pi \cos \left( {2\pi t + \frac{\pi }{5}} \right)\)

Gia tốc tức thời của vật tại thời điểm t là \(a\left( t \right) = v'\left( t \right) =  - \pi .2\pi \sin \left( {2\pi t + \frac{\pi }{5}} \right) =  - 2{\pi ^2}\sin \left( {2\pi t + \frac{\pi }{5}} \right)\)

Tại thời điểm t = 5 giây, gia tốc của vật là \(a\left( 5 \right) =  - 2{\pi ^2}\sin \left( {2\pi .5 + \frac{\pi }{5}} \right) \approx  - 11,6\)(cm/s2)

23 tháng 8 2018

Đáp án A

Phương trình vận tốc của vật là v(t) = s’(t) = 3t2 – 4t + 3

Phương trình gia tốc là: a = v’(t) = 6t – 4 => a(2) = 8 m/s2.

9 tháng 12 2019

Chọn B.

Ta có s’(t) = 3t2 + 10t ; s”(t) = 6t.

Do đó gia tốc chuyển động có phương trình a(t) = 6t.

Gia tốc của chuyển động tại t = 2 là : a(2) = 6.2 = 12

7 tháng 1 2018

Chọn D.

Gia tốc chuyển động tại t = 3s là s”(3)

Ta có: s’(t) = 54 và s’’(t) = 0

Vậy vật chuyển động với gia tốc là 0 nên tại t = 3 thì a = 0.