K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Gọi vận tốc thật của cano là x(km/h)

(ĐIều kiện: x>0)

Vận tốc lúc đi của cano là x+2(km/h)
Vận tốc lúc về của cano là x-2(km/h)

Thời gian đi là: \(\dfrac{40}{x+2}\left(h\right)\)

Thời gian về là \(\dfrac{40}{x-2}\left(h\right)\)

Thời gian cả đi lẫn về hết 4h20p=13/3h nên ta có phương trình:

\(\dfrac{40}{x+2}+\dfrac{40}{x-2}=\dfrac{13}{3}\)

=>\(\dfrac{40x-80+40x+80}{\left(x+2\right)\left(x-2\right)}=\dfrac{13}{3}\)

=>\(\dfrac{80x}{x^2-4}=\dfrac{13}{3}\)

=>\(13\left(x^2-4\right)-240x=0\)

=>\(13x^2-240x-52=0\)

\(\text{Δ}=\left(-240\right)^2-4\cdot13\cdot\left(-52\right)=60304>0\)

Do đó: Phương trình có hai nghiệm phân biệt là:

\(\left[{}\begin{matrix}x_1=\dfrac{240-\sqrt{60304}}{26}\left(loại\right)\\x_2=\dfrac{240+\sqrt{60304}}{26}\left(nhận\right)\end{matrix}\right.\)

Vậy: Vận tốc thật của cano là \(\dfrac{240+\sqrt{60304}}{26}\left(\dfrac{km}{h}\right)\)

24 tháng 3 2016

gọi vận tốc thực của tàu khi nước yên lặng là x km/h (x>o) 
vận tốc của thuyền lúc đi là x-4 km/h 
vận tốc của thuyền lúc về là x+4 km/h 
thời gian thuyền di đến bến bên kia la 80/(x-4) h 
thời gian thuyền di được khi quay về la 80/(x+4) h 
vì thời gian cả di lẩn về là 8h20' (hay 25/3 h) nên ta có pt: 
80/(x+4) + 80/(x-4) = 25/3 
<=> 240x-960+240x+960=25x^2-400 
<=> 25x^2-480x-400=0 
dental' = (-240)^2 +25*400= 67600 (>0) căn dental'= 240 
vậy pt có hai nghiệm 
x1= (240-260)/25=0.0.......(loại) 
x2=(240+260)/25=20 (nhận) 
vậy vận tốc của tàu khi nước yên lặng là 20 km/h 

27 tháng 7 2021

Gọi vận tóc riêng của cano là x(km/h, x lớn hơn 0)

-> vận tốc ca nô khi xuôi dòng là: x+4(km/h)

vận tốc cano ngược dòng là: x-4(km/h)

Thời gian cano xuôi dòng là: 120/x+4(h)

Thời gian cano ngược dòng là: 120/x-4(h)

Vì thời gian ca-nô xuôi dòng ít hơn thời gian ngược dòng là 45 phút= \(\dfrac{3}{4}\) h nên

 120/x-4 - 120/x+4 = \(\dfrac{3}{4}\)

⇒ x=\(\sqrt{4032}\)

20 tháng 4 2019

Gọi vận tốc thực của tàu thủy là x ( km/h ) ( đk : x > 4 )

\(\Rightarrow\)vận tốc khi tàu xuôi dòng là x + 4

\(\Rightarrow\)vận tốc khi tàu ngược dòng là x - 4

\(\Rightarrow\)thời gian khi tàu xuôi dòng là : \(\frac{80}{x+4}\)

\(\Rightarrow\)thời gian khi tàu ngược dòng là : \(\frac{80}{x-4}\)

Mà tổng thời gian đi và về của tàu thủy là 8h 20' ( = \(\frac{25}{3}\)h ) nên ta có phương trình : 

\(\frac{80}{x+4}+\frac{80}{x-4}=\frac{25}{3}\)(1)

Bạn giải phương trình này, tìm ra x là ra nhé. có thắc mắc cứ hỏi mình !

16 tháng 5 2015

ở đây nè :   http://olm.vn/hoi-dap/question/89831.html

tick đúng nha

25 tháng 6 2021

gọi vận tốc thật của ca nô là x (km/h) (x>0)

vận tốc xuôi dòng là x+3 (km/h)

vận tốc ngược dòng là x-3 (km/h)

thời gian xuôi dòng là \(\dfrac{72}{x+3}\left(h\right)\)

thời gian ngược dòng là \(\dfrac{54}{x-3}\left(h\right)\)

=> pt :\(\dfrac{72}{x+3}+\dfrac{54}{x-3}=6\\ \Leftrightarrow72\left(x-3\right)+54\left(x+3\right)=6\left(x-3\right)\left(x+3\right)\\ \Leftrightarrow6x^2-126x=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\left(l\right)\\x=21\left(tm\right)\end{matrix}\right.\)

vậy..

Gọi vận tốc thực của cano là x(km/h)(Điều kiện: x>3)

Vận tốc lúc đi là: x+3(km/h)

Vận tốc lúc về là: x-3(km/h)

Thời gian đi xuôi dòng: \(\dfrac{72}{x+3}\left(h\right)\)

Thời gian đi ngược dòng: \(\dfrac{54}{x-3}\left(h\right)\)

Theo đề, ta có phương trình: \(\dfrac{72}{x+3}+\dfrac{54}{x-3}=6\)

\(\Leftrightarrow\dfrac{72\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}+\dfrac{54\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=\dfrac{6\left(x^2-9\right)}{\left(x-3\right)\left(x+3\right)}\)

Suy ra: \(6x^2-54=72x-216+54x+162\)

\(\Leftrightarrow6x^2-126x=0\)

\(\Leftrightarrow x\left(6x-126\right)=0\)

Suy ra: 6x-126=0

\(\Leftrightarrow6x=126\)

hay x=21(thỏa ĐK)

Vậy: Vận tốc thực là 21km/h

28 tháng 5 2017

GỌI vận tốc thật của ca nô là x>0 thì vận tốc khi xuôi dòng là x+3 ; vận tốc ca nô khi ngược dòng là x-3

mà thời gian chạy cả xuôi dòng và ngược dòng mất 6 tiếng nên

\(\frac{72}{x+3}+\frac{54}{x-3}=6\Leftrightarrow\frac{72x-216+54x+162}{x^2-9}=6\)đk \(\hept{\begin{cases}x\ne3\\x\ne-3\end{cases}}\)

\(\Leftrightarrow126x-54=6x^2-54\Leftrightarrow6x^2-126x=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=21\end{cases}}\) 

kết hợp đk có x=21. Vậy vận tốc thật của tầu là 21 km/h

28 tháng 7 2020

Gọi vận tốc thật của ca nô là x ( km/h , x > 3 )

=> Vận tốc xuôi dòng = x+3 ( km/h ) và vận tốc ngược dòng = x-3 ( km/h )

Xuôi dòng 72km => Thời gian đi = \(\frac{72}{x+3}\)giờ

Ngược dòng 54km => Thời gian đi = \(\frac{54}{x-3}\)giờ

Tổng thời gian hết 6 giờ

=> Ta có phương trình : \(\frac{72}{x+3}+\frac{54}{x-3}=6\)\(x\ne\pm3\))

                             \(\Leftrightarrow\frac{72\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}+\frac{54\left(x+3\right)}{\left(x+3\right)\left(x-3\right)}=\frac{6\left(x+3\right)\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}\)

                             \(\Leftrightarrow\frac{72x-216}{\left(x+3\right)\left(x-3\right)}+\frac{54x+162}{\left(x+3\right)\left(x-3\right)}=\frac{6\left(x^2-9\right)}{\left(x+3\right)\left(x-3\right)}\)

                             \(\Leftrightarrow72x-216+54x+162=6x^2-54\)

                             \(\Leftrightarrow72x-216+54x+162-6x^2+54=0\)

                             \(\Leftrightarrow-6x^2+126x=0\)

                             \(\Leftrightarrow-6x\left(x-21\right)=0\)

                             \(\Leftrightarrow\orbr{\begin{cases}-6x=0\\x-21=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=0\\x=21\end{cases}}\)

x > 3 => x = 21 

Vậy vận tốc thực của ca nô là 21km/h