Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi vận tốc thực của tàu khi nước yên lặng là x km/h (x>o)
vận tốc của thuyền lúc đi là x-4 km/h
vận tốc của thuyền lúc về là x+4 km/h
thời gian thuyền di đến bến bên kia la 80/(x-4) h
thời gian thuyền di được khi quay về la 80/(x+4) h
vì thời gian cả di lẩn về là 8h20' (hay 25/3 h) nên ta có pt:
80/(x+4) + 80/(x-4) = 25/3
<=> 240x-960+240x+960=25x^2-400
<=> 25x^2-480x-400=0
dental' = (-240)^2 +25*400= 67600 (>0) căn dental'= 240
vậy pt có hai nghiệm
x1= (240-260)/25=0.0.......(loại)
x2=(240+260)/25=20 (nhận)
vậy vận tốc của tàu khi nước yên lặng là 20 km/h
Gọi vận tóc riêng của cano là x(km/h, x lớn hơn 0)
-> vận tốc ca nô khi xuôi dòng là: x+4(km/h)
vận tốc cano ngược dòng là: x-4(km/h)
Thời gian cano xuôi dòng là: 120/x+4(h)
Thời gian cano ngược dòng là: 120/x-4(h)
Vì thời gian ca-nô xuôi dòng ít hơn thời gian ngược dòng là 45 phút= \(\dfrac{3}{4}\) h nên
120/x-4 - 120/x+4 = \(\dfrac{3}{4}\)
⇒ x=\(\sqrt{4032}\)
Gọi vận tốc thực của tàu thủy là x ( km/h ) ( đk : x > 4 )
\(\Rightarrow\)vận tốc khi tàu xuôi dòng là x + 4
\(\Rightarrow\)vận tốc khi tàu ngược dòng là x - 4
\(\Rightarrow\)thời gian khi tàu xuôi dòng là : \(\frac{80}{x+4}\)
\(\Rightarrow\)thời gian khi tàu ngược dòng là : \(\frac{80}{x-4}\)
Mà tổng thời gian đi và về của tàu thủy là 8h 20' ( = \(\frac{25}{3}\)h ) nên ta có phương trình :
\(\frac{80}{x+4}+\frac{80}{x-4}=\frac{25}{3}\)(1)
Bạn giải phương trình này, tìm ra x là ra nhé. có thắc mắc cứ hỏi mình !
ở đây nè : http://olm.vn/hoi-dap/question/89831.html
tick đúng nha
gọi vận tốc thật của ca nô là x (km/h) (x>0)
vận tốc xuôi dòng là x+3 (km/h)
vận tốc ngược dòng là x-3 (km/h)
thời gian xuôi dòng là \(\dfrac{72}{x+3}\left(h\right)\)
thời gian ngược dòng là \(\dfrac{54}{x-3}\left(h\right)\)
=> pt :\(\dfrac{72}{x+3}+\dfrac{54}{x-3}=6\\ \Leftrightarrow72\left(x-3\right)+54\left(x+3\right)=6\left(x-3\right)\left(x+3\right)\\ \Leftrightarrow6x^2-126x=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\left(l\right)\\x=21\left(tm\right)\end{matrix}\right.\)
vậy..
Gọi vận tốc thực của cano là x(km/h)(Điều kiện: x>3)
Vận tốc lúc đi là: x+3(km/h)
Vận tốc lúc về là: x-3(km/h)
Thời gian đi xuôi dòng: \(\dfrac{72}{x+3}\left(h\right)\)
Thời gian đi ngược dòng: \(\dfrac{54}{x-3}\left(h\right)\)
Theo đề, ta có phương trình: \(\dfrac{72}{x+3}+\dfrac{54}{x-3}=6\)
\(\Leftrightarrow\dfrac{72\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}+\dfrac{54\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=\dfrac{6\left(x^2-9\right)}{\left(x-3\right)\left(x+3\right)}\)
Suy ra: \(6x^2-54=72x-216+54x+162\)
\(\Leftrightarrow6x^2-126x=0\)
\(\Leftrightarrow x\left(6x-126\right)=0\)
Suy ra: 6x-126=0
\(\Leftrightarrow6x=126\)
hay x=21(thỏa ĐK)
Vậy: Vận tốc thực là 21km/h
GỌI vận tốc thật của ca nô là x>0 thì vận tốc khi xuôi dòng là x+3 ; vận tốc ca nô khi ngược dòng là x-3
mà thời gian chạy cả xuôi dòng và ngược dòng mất 6 tiếng nên
\(\frac{72}{x+3}+\frac{54}{x-3}=6\Leftrightarrow\frac{72x-216+54x+162}{x^2-9}=6\)đk \(\hept{\begin{cases}x\ne3\\x\ne-3\end{cases}}\)
\(\Leftrightarrow126x-54=6x^2-54\Leftrightarrow6x^2-126x=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=21\end{cases}}\)
kết hợp đk có x=21. Vậy vận tốc thật của tầu là 21 km/h
Gọi vận tốc thật của ca nô là x ( km/h , x > 3 )
=> Vận tốc xuôi dòng = x+3 ( km/h ) và vận tốc ngược dòng = x-3 ( km/h )
Xuôi dòng 72km => Thời gian đi = \(\frac{72}{x+3}\)giờ
Ngược dòng 54km => Thời gian đi = \(\frac{54}{x-3}\)giờ
Tổng thời gian hết 6 giờ
=> Ta có phương trình : \(\frac{72}{x+3}+\frac{54}{x-3}=6\)( \(x\ne\pm3\))
\(\Leftrightarrow\frac{72\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}+\frac{54\left(x+3\right)}{\left(x+3\right)\left(x-3\right)}=\frac{6\left(x+3\right)\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}\)
\(\Leftrightarrow\frac{72x-216}{\left(x+3\right)\left(x-3\right)}+\frac{54x+162}{\left(x+3\right)\left(x-3\right)}=\frac{6\left(x^2-9\right)}{\left(x+3\right)\left(x-3\right)}\)
\(\Leftrightarrow72x-216+54x+162=6x^2-54\)
\(\Leftrightarrow72x-216+54x+162-6x^2+54=0\)
\(\Leftrightarrow-6x^2+126x=0\)
\(\Leftrightarrow-6x\left(x-21\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}-6x=0\\x-21=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=0\\x=21\end{cases}}\)
x > 3 => x = 21
Vậy vận tốc thực của ca nô là 21km/h
Gọi vận tốc thật của cano là x(km/h)
(ĐIều kiện: x>0)
Vận tốc lúc đi của cano là x+2(km/h)
Vận tốc lúc về của cano là x-2(km/h)
Thời gian đi là: \(\dfrac{40}{x+2}\left(h\right)\)
Thời gian về là \(\dfrac{40}{x-2}\left(h\right)\)
Thời gian cả đi lẫn về hết 4h20p=13/3h nên ta có phương trình:
\(\dfrac{40}{x+2}+\dfrac{40}{x-2}=\dfrac{13}{3}\)
=>\(\dfrac{40x-80+40x+80}{\left(x+2\right)\left(x-2\right)}=\dfrac{13}{3}\)
=>\(\dfrac{80x}{x^2-4}=\dfrac{13}{3}\)
=>\(13\left(x^2-4\right)-240x=0\)
=>\(13x^2-240x-52=0\)
\(\text{Δ}=\left(-240\right)^2-4\cdot13\cdot\left(-52\right)=60304>0\)
Do đó: Phương trình có hai nghiệm phân biệt là:
\(\left[{}\begin{matrix}x_1=\dfrac{240-\sqrt{60304}}{26}\left(loại\right)\\x_2=\dfrac{240+\sqrt{60304}}{26}\left(nhận\right)\end{matrix}\right.\)
Vậy: Vận tốc thật của cano là \(\dfrac{240+\sqrt{60304}}{26}\left(\dfrac{km}{h}\right)\)