K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Ta có: ΔOBE cân tại O

mà OD là trung tuyến

nên OD vuông góc với BE và OD là phân giác của góc BOE

b: Xét ΔDEB có

DN vừa là đường cao, vừa là trung tuyến

nên ΔDEB cân tại D

c: Xét ΔDBO và ΔDEO có

DB=DE
BO=EO

DO chung

Do đo: ΔDBO=ΔDEO

=>góc DEO=90 độ

=>DE là tiếp tuyến của (O)

d: Xét (O) có

ΔAEB nội tiếp

AB là đường kính

Do đo: ΔAEB vuông tại E

Xét ΔAEB có AO/AB=AM/AE
nên OM//EB và OM=EB/2

=>OM//EN và OM=EN

=>EMON là hình bình hành

mà góc MEN=90 độ

nên EMON là hình chữ nhật

a: Ta có: ΔOBE cân tại O

mà OD là trung tuyến

nên OD vuông góc với BE và OD là phân giác của góc BOE

b: Xét ΔDEB có

DN vừa là đường cao, vừa là trung tuyến

nên ΔDEB cân tại D

c: Xét ΔDBO và ΔDEO có

DB=DE
BO=EO

DO chung

Do đo: ΔDBO=ΔDEO

=>góc DEO=90 độ

=>DE là tiếp tuyến của (O)

d: Xét (O) có

ΔAEB nội tiếp

AB là đường kính

Do đo: ΔAEB vuông tại E

Xét ΔAEB có AO/AB=AM/AE
nên OM//EB và OM=EB/2

=>OM//EN và OM=EN

=>EMON là hình bình hành

mà góc MEN=90 độ

nên EMON là hình chữ nhật

a: Ta có: ΔOBE cân tại O

mà OD là trung tuyến

nên OD vuông góc với BE và OD là phân giác của góc BOE

b: Xét ΔDEB có

DN vừa là đường cao, vừa là trung tuyến

nên ΔDEB cân tại D

c: Xét ΔDBO và ΔDEO có

DB=DE
BO=EO

DO chung

Do đo: ΔDBO=ΔDEO

=>góc DEO=90 độ

=>DE là tiếp tuyến của (O)

d: Xét (O) có

ΔAEB nội tiếp

AB là đường kính

Do đo: ΔAEB vuông tại E

Xét ΔAEB có AO/AB=AM/AE
nên OM//EB và OM=EB/2

=>OM//EN và OM=EN

=>EMON là hình bình hành

mà góc MEN=90 độ

nên EMON là hình chữ nhật

13 tháng 1 2017

(Quá lực!!!)

E N A B C D O H L

Đầu tiên, hãy CM tam giác \(EAH\) và \(ABD\) đồng dạng.

Từ đó suy ra \(\frac{EA}{AB}=\frac{AH}{BD}\) hay \(\frac{EA}{OB}=\frac{AC}{BD}\).

Từ đây CM được tam giác \(EAC\) và \(OBD\) đồng dạng.

Suy ra \(\widehat{ECA}=\widehat{ODB}\). Do đó nếu gọi \(OD\) cắt \(EC\) tại \(L\) thì CM được \(OD⊥EC\).

-----

Đường tròn đường kính \(NC\) cắt \(EC\) tại \(F\) nghĩa là \(NF⊥EC\), hay \(NF\) song song với \(OD\).

Vậy \(NF\) chính là đường trung bình của tam giác \(AOD\), vậy \(NF\) qua trung điểm \(AO\) (là một điểm cố định) (đpcm)