Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hãy tích cho tui đi
Nếu bạn tích tui
Tui không tích lại đâu
THANKS
Để ( 2x - 1/2 ) ( 3x - 1/3 ) < 0 thì xảy ra 2 trường hợp :
TH1 : 2x - 1/2 > 0 và 3x - 1/3 < 0
\(\Rightarrow\hept{\begin{cases}2x-\frac{1}{2}>0\\3x-\frac{1}{3}< 0\end{cases}\Rightarrow\hept{\begin{cases}x>\frac{1}{4}\\x< \frac{1}{9}\end{cases}\Rightarrow}x\in\varnothing}\)
TH2 : 2x - 1/2 < 0 và 3x - 1/3 > 0
\(\Rightarrow\hept{\begin{cases}2x-\frac{1}{2}< 0\\3x-\frac{1}{3}>0\end{cases}\Rightarrow\hept{\begin{cases}x< \frac{1}{4}\\x>\frac{1}{9}\end{cases}\Rightarrow\frac{1}{9}< x< \frac{1}{4}}}\)
Vậy,...........
Bài làm:
Ta có: \(\left|x-2\right|=x\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=x\\x-2=-x\end{cases}}\Leftrightarrow\orbr{\begin{cases}0x=2\left(∄x\right)\\2x=2\end{cases}}\Rightarrow x=1\)
Vậy x = 1
Bài 2:
a.
$P=M+N=-xy^2+3x^2y-x^2y^2+\frac{1}{2}x^2y-xy^2+\frac{-2}{3}x^2y^2$
$=(-xy^2-xy^2)+(3x^2y+\frac{1}{2}x^2y)+(-x^2y^2+\frac{-2}{3}x^2y^2)$
$=-2xy^2+\frac{7}{2}x^2y-\frac{5}{3}x^2y^2$
b.
$Q=N-M=(\frac{1}{2}x^2y-xy^2+\frac{-2}{3}x^2y^2)-(-xy^2+3x^2y-x^2y^2)$
$=(\frac{1}{2}x^2y-3x^2y)-xy^2+xy^2+(\frac{-2}{3}x^2y^2+x^2y^2)$
$=\frac{-5}{2}x^2y+\frac{1}{3}x^2y^2$
c.
$Q=\frac{-5}{2}(-1)^2.\frac{1}{2}+\frac{1}{3}(-1)^2.(\frac{1}{2})^2=\frac{-7}{6}$
Bài 3:
a.
$A(x)=\frac{1}{3}x^2-2x^3+2x-\frac{4}{3}x^2-x-1$
$=-2x^3-x^2+x-1$
$A(x)$ có hệ số cao nhất là $-2$ và hệ số tự do là $-1$
$B(x)=2x^3+x^2+1$
$B(x)$ có hệ số cao nhất là $2$ và hệ số tự do là $1$
b.
$B(x)=(2x^3+2x^2)-(x^2-1)=2x^2(x+1)-(x-1)(x+1)$
$=(x+1)(2x^2-x+1)$
$B(-1)=(-1+1)(2x^2-x+1)=0$ nên $-1$ là nghiệm của $B(x)$
c.
$C(x)=A(x)+B(x)=-2x^3-x^2+x-1+(2x^3+x^2+1)$
$=x$
d.
$C(x)=0\Leftrightarrow x=0$
Vậy $x=0$ là nghiệm của $C(x)$
Bạn tự vẽ hình nhé.
K là giao điểm của 2 đường phân giác BD và CE => AK là phân giác của góc A (Vì 3 đường phân giác đồng quy tại 1 điểm)
Mà tam giác ABC cân tại A => Phân giác góc A cũng chính là trung tuyến => AK qua trung điểm của BC
(Hoặc bạn có thể chứng minh cụ thể như sau: Kéo dài AK cắt BC tại M
Xét 2 t.g AMB và AMC có:
- AM chung
- g. BAM = CAM (vì AK là phân giác; K thuộc AM)
-AB = AC (2 cạnh bên của tam giác cân ABC)
=> t.g AMB = t. AMC (C.G.C) => MB = MC => M là trung điểm của BC.)
Hình như không có DBXR đâu . Chỉ có ĐKXĐ là điều kiện xác định thôi . :)
Bài 5:
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}=\dfrac{a+b+c}{3+4+5}=\dfrac{120}{12}=10\)
Do đó: a=30; b=40; c=50
Vì \(x:y:z=2:3:4\)
\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)
\(\Rightarrow\frac{x}{2}=\frac{2y}{6}=\frac{z}{4}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x}{2}=\frac{2y}{6}=\frac{z}{4}=\frac{x+2y-z}{2+6-4}=\frac{-8}{4}=-2\)
\(\Rightarrow\hept{\begin{cases}x=-2.2=-4\\y=-2.3=-6\\z=-2.4=-8\end{cases}}\)
Vậy \(\hept{\begin{cases}x=-4\\y=-6\\z=-8\end{cases}}\)
Ta có :\(x\div y\div z=2\div3\div4\)
\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\).
Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=k\left(k\ne0\right)\)
\(\Rightarrow\hept{\begin{cases}x=2k\\y=3k\\z=4k\end{cases}\Rightarrow\hept{\begin{cases}x=2k\\2y=6k\\z=4k\end{cases}}}\)
Mà \(x+2y-z=-8\)
\(\Rightarrow2k+6k-4k=-8\)
\(\Rightarrow4k=-8\)
\(\Rightarrow k=-2\)
\(\Rightarrow\hept{\begin{cases}x=2.\left(-2\right)\\y=3.\left(-2\right)\\z=4.\left(-2\right)\end{cases}\Rightarrow\hept{\begin{cases}x=-4\\y=-6\\z=-8\end{cases}}}\)
Vậy \(\hept{\begin{cases}x=-4\\y=-6\\z=-8\end{cases}}\)
TL;
Chọn A
HT
A nha bn
HT