Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
dùng ông thức hạ bậc
cos2a=\(\dfrac{1+cos2a}{2}\)
pt<=>1+cos(4x+\(\dfrac{2\Pi}{3}\))-3sin(2x+\(\dfrac{5\Pi}{6}\))+1=0
<=>-\(\dfrac{1}{2}\)cos4x-\(\dfrac{\sqrt{3}}{2}\)sin4x+\(\dfrac{3\sqrt{3}}{2}\)sin2x-\(\dfrac{3}{2}\)cos2x+2=0
<=>(-\(\dfrac{1}{2}\)cos4x+\(\dfrac{3\sqrt{3}}{2}\)sin2x+2)+(-\(\sqrt{3}\)sin2x.cos2x-\(\dfrac{3}{2}\)cos2x)=0
<=>[-\(\dfrac{1}{2}\)(1-2sin22x)+\(\dfrac{3\sqrt{3}}{2}\)sin2x+2)-cos2x.(\(\sqrt{3}\)sin2x+\(\dfrac{3}{2}\))=0
<=>(sin22x+\(\dfrac{3\sqrt{3}}{2}\)sin2x+\(\dfrac{3}{2}\))-cos2x.(\(\sqrt{3}\)sin2x+\(\dfrac{3}{2}\))=0
<=>(sin2x+\(\dfrac{\sqrt{3}}{2}\))(sin2x+\(\sqrt{3}\))-cos2x.(sin2x+\(\dfrac{\sqrt{3}}{2}\))=0
<=>(sin2x+\(\dfrac{\sqrt{3}}{2}\))(sin2x-cos2x+\(\sqrt{3}\))=0
tới đây bạn tự giải nhé
Câu 1: a)
\(lim\frac{3n+1}{9n+2}=lim\frac{n\left(3+\frac{1}{n}\right)}{n\left(9+\frac{2}{n}\right)}=lim\frac{3+\frac{1}{n}}{9+\frac{2}{n}}=\frac{3+0}{9+0}=\frac{1}{3}\)
b)
\(lim_{x\rightarrow1}\frac{x^2-5x+4}{x-1}=lim_{x\rightarrow1}\frac{\left(x-4\right).\left(x-1\right)}{x-1}\)
\(=lim_{x\rightarrow1}x-4=1-4=-3\)
Câu 1: a)
lim3n+19n+2 =limn(3+1n )n(9+2n ) =lim3+1n 9+2n =3+09+0 =13
b)
limx→1x2−5x+4x−1 =limx→1(x−4).(x−1)x−1