Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\left|x+3,4\right|+\left|x+2,4\right|+\left|x+7,2\right|=4x\)
\(\left|x+3,4\right|\ge0;\left|x+2,4\right|\ge0;\left|x+7,2\right|\ge0\)
\(< =>\left|x+3,4\right|+\left|x+2,4\right|+\left|x+7,2\right|>0\)
\(< =>4x>0\)
\(x>0\)
\(\hept{\begin{cases}\left|x+3,4\right|=x+3,4\\\left|x+2,4\right|=x+2,4\\\left|x+7,2\right|=x+7,2\end{cases}}\)
\(x+3,4+x+2,4+x+7,2=4x\)
\(x=13\left(TM\right)\)
\(b,3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}\)
\(3^n.27+3^n.3+2^n.8+2^n.4\)
\(3^n.30+2^n.12\)
\(\hept{\begin{cases}3^n.30⋮6\\2^n.12⋮6\end{cases}}\)
\(< =>3^n.30+2^n.12⋮6< =>VP⋮6\)
18, \(\frac{x}{2}+\frac{x^2}{8}=0\Leftrightarrow4x+x^2=0\Leftrightarrow x\left(x+4\right)=0\Leftrightarrow x=-4;x=0\)
19, \(4-x=2\left(x-4\right)^2\Leftrightarrow\left(4-x\right)-2\left(4-x\right)^2=0\)
\(\Leftrightarrow\left(4-x\right)\left[1-2\left(4-x\right)\right]=0\Leftrightarrow\left(4-x\right)\left(-7+2x\right)=0\Leftrightarrow x=4;x=\frac{7}{2}\)
20, \(\left(x^2+1\right)\left(x-2\right)+2x-4=0\Leftrightarrow\left(x^2+1\right)\left(x-2\right)+2\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+3>0\right)=0\Leftrightarrow x=2\)
21, \(x^4-16x^2=0\Leftrightarrow x^2\left(x-4\right)\left(x+4\right)=0\Leftrightarrow x=0;x=\pm4\)
22, \(\left(x-5\right)^3-x+5=0\Leftrightarrow\left(x-5\right)^3-\left(x-5\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left[\left(x-5\right)^2-1\right]=0\Leftrightarrow\left(x-5\right)\left(x-6\right)\left(x-4\right)=0\Leftrightarrow x=4;x=5;x=6\)
23, \(5\left(x-2\right)-x^2+4=0\Leftrightarrow5\left(x-2\right)-\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(5-x-2\right)=0\Leftrightarrow x=2;x=3\)
\(a.=x\)
\(b.=y^3\)
\(c.=3xy\)
\(d.=-\frac{5}{2}a\)
\(e.=3yz\)
\(f.=-3xy\)
Bài 1:
a) Ta có: AB // CD (ABCD là hình chữ nhật; AB,CD là cạnh đối);
=> DBA = BDC (so le trong) (1)
Xét: \(\Delta\) AHB và \(\Delta\) BCD có:
AHB = BCD =900 (gt)
DBA = BDC (theo (1))
Do đó \(\Delta\) AHB đồng dạng \(\Delta\) BCD (g-g)
b) Ta có: *AB = CD = 12(cm)
* \(\Delta\) BCD vuông tai C(gt)
=> BC2 + CD2= BD2
hay 92 + 122 = BD2
=> BD2 = 225
=> BD = \(\sqrt{225}\) =15
Ta có: \(\Delta\) AHB đồng dạng \(\Delta\) BCD (Cmt)
=> \(\dfrac{AH}{BC}\) = \(\dfrac{AB}{BD}\) hay \(\dfrac{AH}{9}\) = \(\dfrac{12}{15}\)
=> AH = \(\dfrac{9.12}{15}\) = 7,2
c) Ta có: \(\Delta\) AHB vuông tại A(gt)
=> HB2 = AB2 - AH2
hay HB2 = 122 - 7,22 = 92,16
=> HB = \(\sqrt{92,16}\) = 9,6
Ta có : S\(\Delta AHB\) =\(\dfrac{AH.HB}{2}\) = \(\dfrac{7,2.9,6}{2}\) = 34.56
86.NHỮNG PHÉP TÍNH THÚ VỊ
24+36=1
11+13=1
158+207=1
46+54=1
thì khi đó người làm câu hỏi bị sai/ mình nghĩ thế
Trả lời:
Bài 1:
a, \(A=\frac{x^2+x}{x^2-2x+1}:\left(\frac{x+1}{x}-\frac{1}{1-x}+\frac{2-x^2}{x^2-x}\right)\)\(\left(ĐKXĐ:x\ne0;x\ne1\right)\)
\(=\frac{x\left(x+1\right)}{\left(x-1\right)^2}:\left[\frac{x+1}{x}+\frac{1}{x-1}+\frac{2-x^2}{x\left(x-1\right)}\right]\)
\(=\frac{x\left(x+1\right)}{\left(x-1\right)^2}:\left[\frac{\left(x+1\right)\left(x-1\right)}{x\left(x-1\right)}+\frac{x}{x\left(x-1\right)}+\frac{2-x^2}{x\left(x-1\right)}\right]\)
\(=\frac{x\left(x+1\right)}{\left(x-1\right)^2}:\frac{\left(x+1\right)\left(x-1\right)+x+2-x^2}{x\left(x-1\right)}\)
\(=\frac{x\left(x+1\right)}{\left(x-1\right)^2}:\frac{x^2-1+x+2-x^2}{x\left(x-1\right)}\)
\(=\frac{x\left(x+1\right)}{\left(x-1\right)^2}:\frac{x+1}{x\left(x-1\right)}=\frac{x\left(x+1\right)}{\left(x-1\right)^2}\cdot\frac{x\left(x-1\right)}{x+1}=\frac{x^2}{x-1}\)
b, \(\left|2x-5\right|=3\)
\(\Leftrightarrow\orbr{\begin{cases}2x-5=3\\2x-5=-3\end{cases}\Leftrightarrow\orbr{\begin{cases}2x=8\\2x=2\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=4\left(tm\right)\\x=1\left(ktm\right)\end{cases}}}\)
Thay x = 4 vào A, ta có:
\(A=\frac{4^2}{4-1}=\frac{16}{3}\)
c, \(A=4\)
\(\Leftrightarrow\frac{x^2}{x-1}=4\)
\(\Leftrightarrow\frac{x^2}{x-1}=\frac{4\left(x-1\right)}{x-1}\)
\(\Rightarrow x^2=4x-4\)
\(\Leftrightarrow x^2-4x+4=0\)
\(\Leftrightarrow\left(x-2\right)^2=0\)
\(\Leftrightarrow x-2=0\)
\(\Leftrightarrow x=2\)
Vậy x = 2 thì A = 4
d, \(A< 2\)
\(\Leftrightarrow\frac{x^2}{x-1}< 2\)
\(\Leftrightarrow\frac{x^2}{x-1}-2< 0\)
\(\Leftrightarrow\frac{x^2-2\left(x-1\right)}{x-1}< 0\)
\(\Leftrightarrow\frac{x^2-2x+2}{x-1}< 0\)
\(\Leftrightarrow x-1< 0\) ( vì \(x^2-2x+2=\left(x^2-2x+1\right)+1=\left(x-1\right)^2+1\ge1>0\forall x\) )
\(\Leftrightarrow x< 1\)
Vậy x < 1 thì A < 2