Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=\frac{3}{\sqrt{7}-2}+\frac{7}{\sqrt{7}-\sqrt{28}}=\frac{3}{\sqrt{7}-2}-\sqrt{7}\)
\(=\frac{3-7+2\sqrt{7}}{\sqrt{7}-2}=\frac{-4+2\sqrt{7}}{\sqrt{7}-2}=\frac{2\left(\sqrt{7}-2\right)}{\sqrt{7}-2}=2\)
đk: \(\hept{\begin{cases}x>0\\x\ne4\end{cases}}\)
\(B=\left(\frac{1}{\sqrt{x}-2}+\frac{1}{\sqrt{x}+2}\right)\cdot\frac{\sqrt{x}-2}{\sqrt{x}}\)
\(B=\frac{2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\cdot\frac{\sqrt{x}-2}{\sqrt{x}}\)
\(B=\frac{2}{\sqrt{x}+2}\)
b) \(6B-A>0\Leftrightarrow\frac{12}{\sqrt{x}+2}-2>0\)
\(\Leftrightarrow\frac{8-2\sqrt{x}}{\sqrt{x}+2}>0\Rightarrow8-2\sqrt{x}>0\left(because:\sqrt{x}+2>0\right)\)
\(\Rightarrow\sqrt{x}< 4\Rightarrow x< 16\)
Vậy \(\hept{\begin{cases}0< x< 16\\x\ne4\end{cases}}\)
a) Vì \(\hept{\begin{cases}MI\perp AB\\MK\perp AC\end{cases}\Rightarrow\hept{\begin{cases}\widehat{AIM}=90^0\\\widehat{AKM}=90^0\end{cases}}}\)
Xét tứ giác AIMK có \(\widehat{AIM}+\widehat{AKM}=180^0\)mà 2 góc này ở vị trí đối nhau trong tứ giác AIMK
\(\Rightarrow AIMK\)nội tiếp ( dhnb )
b) Vì \(MP\perp BC\Rightarrow\widehat{MPC}=90^0\)
Xét tứ giác MPCK có \(\widehat{MPC}+\widehat{MKC}=180^0\)
Mà 2 góc này ở vị trí đối nhau trong tứ giác MPCK
\(\Rightarrow MPCK\)nội tiếp ( dhnb)
\(\Rightarrow\widehat{MPK}=\widehat{MCK}\)(1)
Vì AC là tiếp tuyến của (O) tại C; BC là dây cung
\(\Rightarrow\widehat{MCK}=\widehat{MBC}\left(=\frac{1}{2}sđ\widebat{MC}\right)\)(2)
Từ (1) và (2) \(\Rightarrow\widehat{MPK}=\widehat{MBC}\)
kia hình như có dấu chia bạn nhỉ