\(\left(x+3\right)^{2014}=\left(x+3\right)^{2012}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 12 2020

\(\left(x+3\right)^{2014}=\left(x+3\right)^{2012}\Leftrightarrow\left(x+3\right)^{2014}-\left(x+3\right)^{2012}=0\)

\(\Leftrightarrow\left(x+3\right)^{2012}\left[\left(x+3\right)^2-1\right]=0\)

TH1 : \(x=-3\)

TH2 : \(\left(x+3-1\right)\left(x+3+1\right)=0\Leftrightarrow\left(x+2\right)\left(x+4\right)=0\Leftrightarrow x=-2;-4\)

\(\left(x-3\right)^{2014}=\left(x-3\right)^{2011}\Leftrightarrow\left(x-3\right)^{2014}-\left(x-3\right)^{2011}=0\)

\(\Leftrightarrow\left(x-3\right)^{2011}\left[\left(x-3\right)^3-1\right]=0\)

TH1 : \(x=3\)

TH2 : \(\left(x-4\right)\left(x^2+4x+16\ne0\right)=0\Leftrightarrow x=4\)

x=100

nên x+1=101

\(f\left(x\right)=x^{2014}-\left(x+1\right)\left(x^{2013}-x^{2012}+...-x^2+x\right)+25\)

\(=x+25\)

=x+25=100+25=125

a) Ta có:

\(\frac{x+11}{12}+\frac{x+11}{13}+\frac{x+11}{14}=\frac{x+11}{15}+\frac{x+11}{16}\)

\(\Rightarrow\left(x+11\right)\left(\frac{1}{12}+\frac{1}{13}+\frac{1}{14}\right)=\left(x+11\right)\left(\frac{1}{15}+\frac{1}{16}\right)\)

Mà ta có:

\(\frac{1}{12}+\frac{1}{13}+\frac{1}{14}\ne\frac{1}{15}+\frac{1}{16}\)

\(\Rightarrow x+11=0\Rightarrow x=-11\)

Ta có:

\(A=1+x+x^2+x^3+...+x^{100}\)

Đặt \(B=x+x^2+x^3+...+x^{100}\)

\(\Rightarrow B=\left(-11\right)+\left(-11\right)^2+\left(-11\right)^3+...+\left(-11\right)^{100}\)

\(\Rightarrow-11B=\left(-11\right)^2+\left(-11\right)^3+\left(-11\right)^4+...+\left(-11\right)^{101}\)

\(\Rightarrow-11B-B=\left(-11\right)^{101}-\left(-11\right)\)

\(\Rightarrow-12B=\left(-11\right)^{101}+11\Rightarrow B=\frac{\left(-11\right)^{101}+11}{-12}\)

\(\Rightarrow A=1+B=\frac{\left(-11\right)^{101}+11}{-12}+1\)

a: =>|5x+4|=19

=>5x+4=19 hoặc 5x+4=-19

=>5x=15 hoặc 5x=-23

=>x=3 hoặc x=-23/5

b: =>3|2x-9|=33

=>|2x-9|=11

=>2x-9=11 hoặc 2x-9=-11

=>2x=20 hoặc 2x=-2

=>x=10 hoặc x=-1

d: =>|17x-5|=|17x+5|

=>17x-5=17x+5 hoặc 17x-5=-17x-5

=>34x=0

hay x=0

3: |2x-1|=|x+1|

=>2x-1=x+1 hoặc 2x-1=-x-1

=>x=2 hoặc 3x=0

=>x=2 hoặc x=0

4: \(\Leftrightarrow\left\{{}\begin{matrix}x+\sqrt{5}=0\\y-\sqrt{3}=0\\x-y-z=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\sqrt{5}\\y=\sqrt{3}\\z=x-y=-\sqrt{5}-\sqrt{3}\end{matrix}\right.\)

3 tháng 12 2017

( x - 2 )2012  + | y2 - 9 |2014 = 0  ( 1 )

vì ( x - 2 )2012 \(\ge\)0 ; | y2 - 9 |2014 \(\ge\)0      ( 2 )

Từ ( 1 ) và ( 2 ) \(\Rightarrow\hept{\begin{cases}\left(x-2\right)^{2012}=0\\\left|y^2-9\right|^{2014}=0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x-2=0\\y^2-9=0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x=2\\y=3\end{cases}}\)

Vậy x = 2 ; y = 3

còn lại tương tự

3 tháng 12 2017

Vì (x -2 )2012> hoặc =0 mà |y2 -9 |2014 > hoặc =0 nên để (x -2 )2012 + | y2 -9 |2014 =0 thì (x-2)2012 =0 và |y2 -9| =0

=>( x-2)=0 và y2-9=0

=>x=0 và y2=9

=>x=o và y=3 hoặc x= -3

25 tháng 7 2021

a) Ta có |x - 3| + |7 - x| \(\ge\left|x-3+7-x\right|=\left|4\right|=4\)

Dấu "=" xảy ra <=> (x - 3)(7 - x) \(\ge0\Leftrightarrow3\le x\le7\)

Vậy \(3\le x\le7\)

b)  Ta có |x + 1| + |x - 4| = |x + 1| + |4 - x| \(\ge\left|x+1+4-x\right|=\left|5\right|=5\)

Dấu "=" xảy ra <=> \(\left(x+1\right)\left(4-x\right)\ge0\Leftrightarrow-1\le x\le4\)

Vậy \(-1\le x\le4\)

c) Ta có |x + 3| + |x + 7| = |-x - 3| + |x + 7| \(\ge\left|-x-3+x+7\right|=\left|4\right|=4\)

Dấu "=" xảy ra <=> \(\left(-x-3\right)\left(x+7\right)\ge0\Leftrightarrow-7\le x\le-3\)

Vậy \(-7\le x\le-3\)