Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b)x3-2x2-4xy2+x
=x(x2-2x-4y2+1)
=x[(x2-2x+1)-4y2]
=x[(x-1)2-4y2]
=x(x-1-2y)(x-1+2y)
c) (x+2)(x+3)(x+4)(x+5)-8
=[(x+2)(x+5)][(x+3)(x+4)]-8
=(x2+5x+2x+10)(x2+4x+3x+12)-8
=(x2+7x+10)(x2+7x+12)-8
đặt x2+7x+10 =a ta có
a(a+2)-8
=a2+2a-8
=a2+4a-2a-8
=(a2+4a)-(2a+8)
=a(a+4)-2(a+4)
=(a+4)(a-2)
thay a=x2+7x+10 ta đc
(x2+7x+10+4)(x2+7x+10-2)
=(x2+7x+14)(x2+7x+8)
bài 2 x3-x2y+3x-3y
=(x3-x2y)+(3x-3y)
=x2(x-y)+3(x-y)
=(x-y)(x2+3)
1) \(\frac{x-y}{z-y}=-10\Leftrightarrow x-y=10\left(y-z\right)\)
\(\Leftrightarrow x-y=10y-10z\)
\(\Leftrightarrow x=11y-10z\)
Thay x=11y-10z vào biểu thức \(\frac{x-z}{y-z}\), ta có:
\(\frac{11y-10z-z}{y-z}=\frac{11y-11z}{y-z}=\frac{11\left(y-z\right)}{y-z}=11\)
Chá quá, có ghi nhìn không rõ đề
2) \(2x^2=9x-4\)
\(\Leftrightarrow2x^2-9x+4=0\)
\(\Leftrightarrow2x^2-8x-x+4=0\)
\(\Leftrightarrow2x\left(x-4\right)-1\left(x-4\right)\)
\(\Leftrightarrow\left(2x-1\right)\left(x-4\right)=0\)
\(\Leftrightarrow2x-1=0\) hoặc x-4=0
1) 2x-1=0<=>x=1/2
2)x-4=0<=>x=4(Loại)
=> x=1/2
Bài 4:
a: ĐKXĐ: \(x\notin\left\{1;-1\right\}\)
b: \(M=\dfrac{x}{2x-2}+\dfrac{x^2+1}{2-2x^2}\)
\(=\dfrac{x}{2\left(x-1\right)}-\dfrac{x^2+1}{2\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{x^2+x-x^2-1}{2\left(x-1\right)\left(x+1\right)}=\dfrac{1}{2\left(x+1\right)}\)
c: Để M=1/2 thì 2(x+1)=2
=>x+1=1
hay x=0
đề 1 bài 4
xét tam gics ABC và tam giác HBA có
góc B chung
góc BAC = góc BHA (=90 độ)
=> tam giác ABC đồng dạng vs tam giác HBA (g.g)
=> AB/HB=BC/AB=> AB^2=HB *BC
áp dụng đl py ta go trog tam giác vuông ABC có
BC^2 = AB^2 +AC^2=6^2+8^2=100
=> BC =\(\sqrt{100}\)=10 cm
ta có tam giác ABC đồng dạng vs tam giác HBA (cm câu a )
=> AC/AH=BC/BA=>AH=8*6/10=4.8CM
=>AB/BH=AC/AH=> BH=6*4.8/8=3,6cm
=>HC =BC-BH=10-3,6=6,4cm
dề 1 bài 1
5x+12=3x -14
<=>5x-3x=-14-12
<=>2x=-26
<=> x=-12
vạy S={-12}
(4x-2)*(3x+4)=0
<=>4x-2=0<=>x=1/2
<=>3x+4=0<=>x=-4/3
vậy S={1/2;-4/3}
đkxđ : x\(\ne2;x\ne-3\)
\(\dfrac{4}{x-2}+\dfrac{1}{x+3}=0\)
<=> 4(x+3)/(x-2)(x+3)+1(x-2)/(x-2)(x+3)
=> 4x+12+x-2=0
<=>5x=-10
<=>x=-2 (nhận)
vậy S={-2}
Bài 2 :
a ) \(25-20x+4x^2=0\)
\(\Leftrightarrow\left(5-2x\right)^2=0\)
\(\Leftrightarrow5-2x=0\Rightarrow x=\dfrac{5}{2}\)
Vậy \(x=\dfrac{5}{2}\)
a,\(\left(-2x^2+3x\right)\left(x^2-x+3\right)\\ \Leftrightarrow-2x^4+2x^3-6x^2+3x^3-3x^2+9x\\ \Leftrightarrow-2x^4+5x^3-3x^2+3x\)
\(b,x\left(x-2\right)\left(x+2\right)-\left(x-3\right)\left(x^2+3x+9+6\right)+6\left(x+1\right)^2=15\\ \Leftrightarrow x\left(x^2-4\right)-\left(x^3-27\right)+6\left(x^2+2x+1\right)=15\\ \Leftrightarrow x^3-4x-x^3+27+6x^2+12x+6=15\\ \Leftrightarrow6x^2+8x+18=0\\ \Leftrightarrow6\left(x^2+\dfrac{4}{3}x+3\right)=0\\ \Leftrightarrow\left(x+\dfrac{2}{3}\right)^2+\dfrac{23}{9}=0\)
Với mọi x thì \(\left(x+\dfrac{2}{3}\right)^2\ge0\Rightarrow\left(x+\dfrac{2}{3}\right)^2+\dfrac{23}{9}>0\)
Do đó ko tìm đc giá trị nào của x thỏa mãn đề bài
Vậy..
A B C I D
B. xét tgiac ADB và tgiac ACI có:
góc BAD= góc IAC(gt)
góc BDA= góc ACI(gt)
vậy tgiac ADB đồng dạng với tgiac ACI(g.g) => Góc ABD= góc CID
ta có tỉ số sau:\(\frac{AD}{AC}\)=\(\frac{AB}{AI}\)=> AB.AC=AD.AI(1)
Xét tgiacADB và tgiac CID có:
góc ADB= góc CDI(đôi đỉnh)
góc ABD= góc CID(cmt)
vậy tgiac ADB đồng dạng với tgiac CID(g.g)
Nên ta có tỉ số sau:\(\frac{BD}{DI}\)=\(\frac{AD}{CD}\)=>BD.CD=AD.DI(2)
Từ (1) và(2) ta có:
AB.AC-BD.CD=AD.AI-AD.DI=AD.(AI-DI)=AD.AD=\(AD^2\)
Vậy\(AD^2\)=AB.AC-BD.CD
ABCID
B. xét tam giác ADB và tgiac ACI có:
góc BAD= góc IAC (gt)
góc BDA= góc ACI (gt)
vậy tam giác ADB đồng dạng với tgiac ACI(g.g) => Góc ABD= góc CID
ta có tỉ số sau:AD/AC=AB/AI=> AB.AC=AD.AI(1)
Xét tam giácADB và tgiac CID có:
góc ADB= góc CDI (đôi đỉnh)
góc ABD= góc CID (cmt)
vậy tgiac ADB đồng dạng với tam giác CID(g.g)
Nên ta có tỉ số sau:BD/DI=AD/CD=>BD.CD=AD.DI(2)
Từ (1) và(2) ta có:
AB.AC-BD.CD=AD.AI-AD.DI=AD.(AI-DI)=AD.AD=AD2
VậyAD2=AB.AC-BD.CD
ta có
\(A+B+C+D=360^0\text{ nên }C+D=360^0-A-B\)
bài 1. ta sẽ có : \(\hept{\begin{cases}C+D=360^0-50^0-50^0=260^0\\C=3D\end{cases}\Leftrightarrow\hept{\begin{cases}C=195^0\\D=65^0\end{cases}}}\)
bài 2. ta sẽ có : \(\hept{\begin{cases}C+D=360^0-50^0-70^0=240^0\\C=2D\end{cases}\Leftrightarrow\hept{\begin{cases}C=160^0\\D=80^0\end{cases}}}\)
bài 1. ta sẽ có : \(\hept{\begin{cases}C+D=360^0-60^0-60^0=240^0\\C-D=20^0\end{cases}\Leftrightarrow\hept{\begin{cases}C=130^0\\D=110^0\end{cases}}}\)