\(\frac{x-y+3\sqrt{x}+3\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 7 2016

Điều kiện xác định : \(x\ge0;y\ge0;\sqrt{x}-\sqrt{y}\ne-3\)

Ta có : \(\frac{x-y+3\sqrt{x}+3\sqrt{y}}{\sqrt{x}-\sqrt{y}+3}=\frac{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)+3\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}-\sqrt{y}+3}=\frac{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}+3\right)}{\sqrt{x}-\sqrt{y}+3}=\sqrt{x}+\sqrt{y}\)

a).  \(\frac{1}{\sqrt{5-\sqrt{7}}}+\frac{\sqrt{5}}{\sqrt{5+\sqrt{7}}})-1\)

\(\Leftrightarrow\frac{1}{\sqrt{25-\sqrt{49}}}-1\)

\(\Leftrightarrow\frac{1}{\sqrt{25-7}}-1\)

\(\Leftrightarrow\frac{1}{\sqrt{18}}-1\)

\(\Leftrightarrow\frac{1}{3\sqrt{2}}-1\) 

ĐẾN ĐÂY BN QUY ĐỒNG LÀ ĐC

13 tháng 5 2021

1,

\(A=\left(\frac{a\sqrt{a}-1}{a-\sqrt{a}}-\frac{a\sqrt{a}+1}{a+\sqrt{a}}\right):\frac{a+2}{a-2}\left(đk:a\ne0;1;2;a\ge0\right)\)

\(=\frac{\left(a\sqrt{a}-1\right)\left(a+\sqrt{a}\right)-\left(a\sqrt{a}+1\right)\left(a-\sqrt{a}\right)}{a^2-a}.\frac{a-2}{a+2}\)

\(=\frac{a^2\sqrt{a}+a^2-a-\sqrt{a}-\left(a^2\sqrt{a}-a^2+a-\sqrt{a}\right)}{a\left(a-1\right)}.\frac{a-2}{a+2}\)

\(=\frac{2a\left(a-1\right)\left(a-2\right)}{a\left(a-1\right)\left(a+2\right)}=\frac{2\left(a-2\right)}{a+2}\)

Để \(A=1\)\(=>\frac{2a-4}{a+2}=1< =>2a-4-a-2=0< =>a=6\)

14 tháng 5 2021

2, 

a, Điều kiện xác định của phương trình là \(x\ne4;x\ge0\)

b, Ta có : \(B=\frac{2\sqrt{x}}{x-4}+\frac{1}{\sqrt{x}-2}-\frac{1}{\sqrt{x}+2}\)

\(=\frac{2\sqrt{x}}{x-4}+\frac{\sqrt{x}+2}{x-4}-\frac{\sqrt{x}-2}{x-4}\)

\(=\frac{2\sqrt{x}+2+2}{x-4}=\frac{2\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\frac{2}{\sqrt{x}-2}\)

c, Với \(x=3+2\sqrt{3}\)thì \(B=\frac{2}{3-2+2\sqrt{3}}=\frac{2}{1+2\sqrt{3}}\)

4 tháng 7 2017

\(a,\frac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}-\sqrt{y}\right)^2\)

\(=\frac{\left(\sqrt{x}+\sqrt{y}\right)\left(x-\sqrt{xy}+y\right)}{\sqrt{x}+\sqrt{y}}-\left(x-2\sqrt{xy}+y\right)\)

\(=x-\sqrt{xy}+y-x+2\sqrt{xy}-y\)

\(=\sqrt{xy}\)

\(b,\sqrt{\frac{x-2\sqrt{x}+1}{x+2\sqrt{x}+1}}\)

\(=\sqrt{\frac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)^2}}\)

\(=\frac{\sqrt{x}-1}{\sqrt{x}+1}\)

Chúc bạn học giỏi 

Kết bạn với mình nha