K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4.2:

a: x^2-x+1=x^2-x+1/4+3/4

=(x-1/2)^2+3/4>=3/4>0 với mọi x

=>x^2-x+1 ko có nghiệm

b: 3x-x^2-4

=-(x^2-3x+4)

=-(x^2-3x+9/4+7/4)

=-(x-3/2)^2-7/4<=-7/4<0 với mọi x

=>3x-x^2-4 ko có nghiệm

5:

a: x^2+y^2=25

x^2-y^2=7

=>x^2=(25+7)/2=16 và y^2=16-7=9

x^4+y^4=(x^2)^2+(y^2)^2

=16^2+9^2

=256+81

=337

b: x^2+y^2=(x+y)^2-2xy

=1^2-2*(-6)

=1+12=13

x^3+y^3=(x+y)^3-3xy(x+y)

=1^3-3*1*(-6)

=1+18=19

 

8 tháng 8 2023

mik cảm ơn bạn nhiều vì đã giúp mik

 

Bài 2:

a: \(\left(-\frac13x^2y\right)\cdot2xy^3=\left(-\frac13\cdot2\right)\cdot x^2\cdot x\cdot y\cdot y^3=-\frac23x^3y^4\)

b: \(\left(-\frac34x^2y\right)\cdot\left(-xy\right)^3=\left(-\frac34\right)\cdot\left(-1\right)\cdot x^2\cdot x^3\cdot y\cdot y^3=\frac34x^5y^4\)

c: \(\frac35\cdot x^2y^5\cdot x^3y^2\cdot\frac{-2}{3}=\left(\frac35\cdot\frac{-2}{3}\right)\cdot x^2\cdot x^3\cdot y^5\cdot y^2=-\frac25x^5y^7\)

d: \(\left(\frac34x^2y^3\right)\cdot\left(2\frac25x^4\right)=\frac34x^2y^3\cdot\frac{12}{5}x^4=\frac34\cdot\frac{12}{5}\cdot x^2\cdot x^4\cdot y^3=\frac95x^6y^3\)

e: \(\left(\frac{12}{15}x^4y^5\right)\cdot\left(\frac59x^2y\right)=\frac45\cdot\frac59\cdot x^4\cdot x^2\cdot y^5\cdot y=\frac49x^6y^6\)

f: \(\left(-\frac17x^2y\right)\left(-\frac{14}{5}x^4y^5\right)=\frac17\cdot\frac{14}{5}\cdot x^2\cdot x^4\cdot y\cdot y^5=\frac25x^6y^6\)

Bài 1: Các đơn thức là \(x^2y;-13;\left(-2\right)^3xy^7\)

NV
10 tháng 3 2023

Đặt \(a=\dfrac{1}{x};b=\dfrac{1}{y};c=\dfrac{1}{z}\Rightarrow xyz=1\) và \(x;y;z>0\)

Gọi biểu thức cần tìm GTNN là P, ta có:

\(P=\dfrac{1}{\dfrac{1}{x^3}\left(\dfrac{1}{y}+\dfrac{1}{z}\right)}+\dfrac{1}{\dfrac{1}{y^3}\left(\dfrac{1}{z}+\dfrac{1}{x}\right)}+\dfrac{1}{\dfrac{1}{z^3}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)}\)

\(=\dfrac{x^3yz}{y+z}+\dfrac{y^3zx}{z+x}+\dfrac{z^3xy}{x+y}=\dfrac{x^2}{y+z}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}\)

\(P\ge\dfrac{\left(x+y+z\right)^2}{y+z+z+x+x+y}=\dfrac{x+y+z}{2}\ge\dfrac{3\sqrt[3]{xyz}}{2}=\dfrac{3}{2}\)

\(P_{min}=\dfrac{3}{2}\) khi \(x=y=z=1\) hay \(a=b=c=1\)

22 tháng 3

Đặt \(a = \frac{1}{x} ; b = \frac{1}{y} ; c = \frac{1}{z} \Rightarrow x y z = 1\) và \(x ; y ; z > 0\)

Gọi biểu thức cần tìm GTNN là P, ta có:

\(P = \frac{1}{\frac{1}{x^{3}} \left(\right. \frac{1}{y} + \frac{1}{z} \left.\right)} + \frac{1}{\frac{1}{y^{3}} \left(\right. \frac{1}{z} + \frac{1}{x} \left.\right)} + \frac{1}{\frac{1}{z^{3}} \left(\right. \frac{1}{x} + \frac{1}{y} \left.\right)}\)

\(= \frac{x^{3} y z}{y + z} + \frac{y^{3} z x}{z + x} + \frac{z^{3} x y}{x + y} = \frac{x^{2}}{y + z} + \frac{y^{2}}{z + x} + \frac{z^{2}}{x + y}\)

\(P \geq \frac{\left(\left(\right. x + y + z \left.\right)\right)^{2}}{y + z + z + x + x + y} = \frac{x + y + z}{2} \geq \frac{3 \sqrt[3]{x y z}}{2} = \frac{3}{2}\)

\(P_{m i n} = \frac{3}{2}\) khi \(x = y = z = 1\) hay \(a = b = c = 1\)

17 tháng 8

17 tháng 8

Bài 13:

a: \(\left\lbrack5\left(x-2y\right)^3\right\rbrack:\left(5x-10y\right)\)

\(=\frac{5\left(x-2y\right)^3}{5\cdot\left(x-2y\right)}\)

\(=\left(x-2y\right)^2\)

b: \(\left\lbrack5\left(a-b\right)^3+2\left(a-b\right)^2\right\rbrack:\left(b-a\right)^2\)

\(=\frac{5\left(a-b\right)^3+2\left(a-b\right)^2}{\left(a-b\right)^2}\)

\(=\frac{5\left(a-b\right)^3}{\left(a-b\right)^2}+\frac{2\left(a-b\right)^2}{\left(a-b\right)^2}\)

=5(a-b)+2

c: Sửa đề: \(\left(x^3+8y^3\right):\left(x+2y\right)\)

\(=\frac{\left(x+2y\right)\left(x^2-2xy+4y^2\right)}{x+2y}\)

\(=x^2-2xy+4y^2\)

Bài 11:

a: Gọi ba số tự nhiên liên tiếp lần lượt là a;a+1;a+2

Tích của hai số sau lớn hơn tích của hai số đầu là 52 nên ta có:

\(\left(a+1\right)\left(a+2\right)-a\left(a+1\right)=52\)

=>\(\left(a+1\right)\left(a+2-a\right)=52\)

=>2(a+1)=52

=>a+1=26

=>a=25

Vậy: ba số tự nhiên liên tiếp cần tìm là 25;25+1=26; 25+2=27

b: a chia 5 dư 1 nên a=5x+1

b chia 5 dư 4 nên b=5y+4

ab+1

\(=\left(5x+1\right)\left(5y+4\right)+1\)

=25xy+20x+5y+4+1

=25xy+20x+5y+5

=5(5xy+4x+y+1)⋮5

c: \(Q=2n^2\left(n+1\right)-2n\left(n^2+n-3\right)\)

\(=2n^3+2n^2-2n^3-2n^2+6n\)

=6n⋮6

Bài 8:

a: \(A=x^2+2xy-3x^3+2y^3+3x^3-y^3\)

\(=x^2+2xy-3x^3+3x^3+2y^3-y^3\)

\(=x^2+2xy+y^3\)

Khi x=5;y=4 thì \(A=5^2+2\cdot5\cdot4+4^3=25+40+64=129\)

b: x=-1;y=-1

=>xy=1

\(x^2y^2=\left(xy\right)^2=1^2=1;x^4y^4=\left(xy\right)^4=1^4=1\) ; \(x^6y^6=\left(xy\right)^6=1^6=1;x^8y^8=\left(xy\right)^8=1^8=1\)

=>B=1-1+1-1+1=1

12 tháng 8

a: Xét ΔKAD và ΔBDA có

\(\hat{KAD}=\hat{BDA}\) (hai góc so le trong, AK//BD)

AD chung

\(\hat{KDA}=\hat{BAD}\) (hai góc so le trong, AB//CD)

Do đó: ΔKAD=ΔBDA

=>KA=BD

mà BD=AC

nên AK=AC

=>ΔAKC cân tại A

b: ΔAKC cân tại A

=>\(\hat{AKC}=\hat{ACK}\)

\(\hat{AKC}=\hat{BDC}\) (hai góc đồng vị, BD//AK)

nên \(\hat{BDC}=\hat{ACD}\)

Xét ΔBDC va ΔACD có

BD=AC

\(\hat{BDC}=\hat{ACD}\)

CD chung

Do đó: ΔBDC=ΔACD

=>\(\hat{BCD}=\hat{ADC}\)

=>ABCD là hình thang cân

a: Xét ΔABC có F,E lần lượt là trung điểm của AB,AC

=>FE là đường trung bình của ΔABC

=>FE//BC và \(FE=\frac12BC\)

=>BFEC là hình thang

Hình thang BFEC có \(\hat{FBC}=\hat{ECB}\) (ΔABC cân tại A)

nên BFEC là hình thang cân

b: Xét ΔABC có

F,D lần lượt là trung điểm của BA,BC

=>FD là đường trung bình của ΔABC

=>FD//AC và \(FD=\frac{AC}{2}\)

Xét ΔMAC có

I,K lần lượt là trung điểm của MA,MC

=>IK là đường trung bình củaΔMAC

=>IK//AC và \(IK=\frac{AC}{2}\)

Ta có: FD//AC

IK//AC

Do đó: FD//IK

Ta có: \(FD=\frac{AC}{2}\)

\(IK=\frac{AC}{2}\)

Do đó: FD=IK

Xét tứ giác FDKI có

FD//IK

FD=IK

Do đó: FDKI là hình bình hành

c: HK=HM+KM

\(=\frac12\cdot\left(MB+MC\right)=\frac12\cdot BC\)

=FE

Xét tứ giác FEKH có

FE//KH

FE=KH

Do đó: FEKH là hình bình hành

=>FK cắt EH tại trung điểm của mỗi đường(1)

FDKI là hình bình hành

=>FK cắt DI tại trung điểm của mỗi đường(2)

Từ (1),(2) suy ra FK,EH,DI đồng quy

d: ΔABC đều

mà AD là đường trung tuyến

nên AD là phân giác của góc BAC và AD⊥BC

=>\(\hat{BAD}=\frac12\cdot\hat{BAC}=\frac12\cdot60^0=30^0\)

Xét tứ giác APMD có \(\hat{APM}+\hat{ADM}=90^0+90^0=180^0\)

nên APMD là tứ giác nội tiếp đường tròn đường kính AM

=>APMD nội tiếp (I)

Xét (I) có \(\hat{PAD}\) là góc nội tiếp chắn cung PD

=>\(\hat{PID}=2\cdot\hat{PAD}=60^0\)

Xét ΔIPD có IP=ID và \(\hat{PID}=60^0\)

nên ΔIPD đều

Từ đề bài, ta có hình vẽ sau:

\(\hat{BAC}=\hat{BAH}+\hat{CAH}=10^0+10^0=20^0\)

Xét ΔABC có

AH là đường cao

AH là đường phân giác

Do đó: ΔABC cân tại A

=>\(\hat{ABC}=\frac{180^0-\hat{BAC}}{2}=\frac{180^0-20^0}{2}=80^0\)

Ta có: \(\hat{KBC}+\hat{KBA}=\hat{ABC}\) (tia BK nằm giữa hai tia BA và BC)

=>\(\hat{KBA}=80^0-40^0=40^0\)

Xét ΔABG và ΔACG có

AB=AC

\(\hat{BAG}=\hat{CAG}\)

AG chung

Do đó: ΔABG=ΔACG

=>\(\hat{ABG}=\hat{ACG}\)

=>\(x=40^0\)

Bài 4:

a: \(C=\frac13\left(-6x^2y^2\right)^2\cdot\left(\frac12x^3y\right)=\frac13\cdot36x^4y^4\cdot\frac12x^3y\)

\(=36\cdot\frac13\cdot\frac12\cdot x^4\cdot x^3\cdot y^4\cdot y=6x^7y^5\)

b: Khi x=1;y=-1 thì \(C=6\cdot1^7\cdot\left(-1\right)^5=6\cdot1\cdot\left(-1\right)=-6\)

Bài 3:

\(D=\left(-\frac37x^2y\right)\left(\frac79x^2y^2\right)=-\frac37\cdot\frac79\cdot x^2\cdot x^2\cdot y\cdot y^2=-\frac13x^4y^3\)

hệ số là -1/3

Bậc là 4+3=7

Biến là \(x^4;y^3\)