K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
12 tháng 4 2020

\(SA\perp\left(ABC\right)\Rightarrow SA\perp BC\)

\(BC\perp AI\Rightarrow BC\perp\left(SAI\right)\)

Ta có: \(AH\in\left(SAI\right)\)\(BC\perp\left(SAI\right)\Rightarrow BC\perp AH\)

Lại có: \(AH\perp SI\Rightarrow AH\perp\left(SBC\right)\)

\(\Rightarrow AH\perp SC\)

15 tháng 4 2020

Cảm ơn bạn ạ

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

loading...

Ta có:

\(\begin{array}{l}\left. \begin{array}{l}SA \bot \left( {ABC} \right) \Rightarrow SA \bot BC\\AI \bot BC\end{array} \right\} \Rightarrow BC \bot \left( {SAI} \right)\\\left. \begin{array}{l} \Rightarrow BC \bot AH\\AH \bot SI\end{array} \right\} \Rightarrow AH \bot \left( {SBC} \right)\end{array}\)

Vậy \(d\left( {A,\left( {SBC} \right)} \right) = AH\).

 

23 tháng 2 2021

Gọi HH là trung điểm của BCBC suy ra

AH=BH=CH=1\2BC=a\2.

Ta có: SH⊥(ABC)⇒SH=√SB2−BH2=a√3\2

ˆ(SA,(ABC))=ˆ(SA,HA)=ˆSAH=α

⇒tanα=SH\AH=√3⇒α=60∘

1:

a: BC vuông góc BA

BC vuông góc SA

=>BC vuông góc (SAB)

b: Kẻ BK vuông góc AC, BH vuông góc SK

=>BH=d(B;(SAC))

\(AC=\sqrt{BA^2+BC^2}=5a\)

AK=(4a)^2/5a=3,2a

BK=4a*3a/5a=2,4a

\(SB=\sqrt{2a^2+16a^2}=3a\sqrt{2}\)

SK=căn 2a^2+10,24a^2=a*3căn 34/5

BK=2,4a

SK^2+BK^2=SB^2

nên ΔSKB vuông tại K

=>K trùng với H

=>d(B;(SAC))=BK=2,4a

5 tháng 5 2022

1) Ta có : \(SA\perp\left(ABC\right)\Rightarrow SA\perp BC\)

BC \(\perp AB;BC\perp SA\Rightarrow BC\perp\left(SAB\right)\Rightarrow BC\perp SB\) \(\Rightarrow\Delta SBC\perp\) tại B 

2) \(BC\perp\left(SAB\right)\Rightarrow BC\perp AH\) . Mà 

\(AH\perp SB\Rightarrow AH\perp\left(SBC\right)\Rightarrow AH\perp HK\)  \(\Rightarrow\Delta AHK\perp\) tại H 

\(\Delta SAB\perp\) tại A ; \(AH\perp SB\) có : \(AH=\dfrac{SA.AB}{\sqrt{SA^2+AB^2}}=\dfrac{a^2}{\sqrt{2a^2}}=\dfrac{\sqrt{2}}{2}a\)

AC = \(\sqrt{AB^2+BC^2}=\sqrt{2a^2}=\sqrt{2}a\)

\(\Delta SAC\perp\) tại A có : \(AK\perp SC\) có : 

\(AK=\dfrac{SA.AC}{\sqrt{SA^2+AC^2}}=\dfrac{a.\sqrt{2}a}{\sqrt{a^2+2a^2}}=\dfrac{\sqrt{6}}{3}a\)

\(HK=\sqrt{AK^2-AH^2}=\sqrt{\dfrac{2}{3}a^2-\dfrac{1}{2}a^2}=\dfrac{\sqrt{6}}{6}a\)

\(S_{AHK}=\dfrac{1}{2}HA.HK=\dfrac{1}{2}\dfrac{\sqrt{2}}{2}a.\dfrac{\sqrt{6}}{6}a=\dfrac{\sqrt{3}}{12}a^2\)

3) AH \(\perp\left(SBC\right)\Rightarrow\left(AK;\left(SBC\right)\right)=\widehat{AKH}\)

\(\Delta AHK\perp\) tại H có : \(sin\widehat{AKH}=\dfrac{AH}{AK}=\dfrac{\sqrt{2}}{2}a:\dfrac{\sqrt{6}}{3}a=\dfrac{\sqrt{3}}{2}\Rightarrow\widehat{AKH}=60^o\)

24 tháng 11 2023

 Theo đề bài, dễ có \(\Delta SAB=\Delta SBC=\Delta SCA\left(c.g.c\right)\)

\(\Rightarrow AB=BC=CA\)

 Gọi M là trung điểm của BC. Khi đó \(\left\{{}\begin{matrix}SM\perp BC\\AM\perp BC\end{matrix}\right.\) (do các tam giác SBC và ABC lần lượt cân tại S và A). Suy ra \(BC\perp\left(SAM\right)\) \(\Rightarrow BC\perp SA\)

 Hoàn toàn tương tự, ta có đpcm.

 

SA vuông góc (P)

SA vuông góc (ABC)

=>(P)//(ABC)

=>B'C'//BC

a: Sửa đề; BC vuông góc SB

BC vuông góc AB

BC vuông góc SA

=>BC vuôg góc (SAB)

=>CB vuông góc SB

c: (SO;(SCD))=(SO;SK)=góc KSO(OK vuông góc DC tại K)

\(AO=\dfrac{AC}{2}=1.5a\)

\(SA=\sqrt{SC^2-AC^2}=\sqrt{\left(5a\right)^2-\left(3a\right)^2}=4a\)

\(SO=\sqrt{SA^2+AO^2}=\dfrac{a\sqrt{73}}{2}\)

\(AD=BC=\sqrt{\left(3a\right)^2-a^2}=2a\sqrt{2}\)

Xét ΔACD có

O là trung điểm của AC

OK//AD

=>K là trung điểm của CD

=>DK=CK=a/2

\(AK=\sqrt{\left(2a\sqrt{2}\right)^2+\left(\dfrac{a}{2}\right)^2}=\dfrac{a\sqrt{33}}{2}\)

\(SK=\sqrt{SA^2+AK^2}=\sqrt{\left(4a\right)^2+\dfrac{33}{4}a^2}=\dfrac{a\sqrt{97}}{2}\)

OK=AD/2=a căn 2

\(SO=\dfrac{a\sqrt{73}}{2}\)

\(cosKSO=\dfrac{SK^2+SO^2-OK^2}{2\cdot SK\cdot SO}\simeq0.96\)

=>góc KSO=16 độ

Câu c bn ch c/m đc OK vuông góc vs mp (SCD) 

Thì sao xác định đc góc cần tìm là OSK

a: BC vuông góc AB

BC vuông góc SA

=>BC vuông góc (SAB)

b: BK vuông góc AC

BK vuôg góc SA

=>BK vuông góc (SAC)