Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Để biểu thức xác định thì \(3x^2+2\ne0\forall x\in R\)
vậy với mọi x thì biểu thức trên luôn xác định.
b) Để .......
\(\left\{{}\begin{matrix}2x+5\ge0\\x-1>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge-\frac{5}{2}\\x>1\end{matrix}\right.\)
vậy biểu thức trên xác định khi x>1.
c) Để ..........
\(\left\{{}\begin{matrix}x+1\ge0\\x^2-2x\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\\left\{{}\begin{matrix}x\ne0\\x\ne2\end{matrix}\right.\end{matrix}\right.\)
Vậy để biểu thức xđ khi \(x\in[-1;+\infty)\backslash\left\{0;2\right\}\)
d) Để ........
\(\left\{{}\begin{matrix}2x+3\ge0\\5-x\ge\\2-\sqrt{5-x}\ne0\end{matrix}\right.0\Leftrightarrow\left\{{}\begin{matrix}x\ge-\frac{3}{2}\\x\le5\\x\ne1\end{matrix}\right.\)
Vậy để btxđ khi \(x\in\left[-\frac{3}{2};5\right]\backslash\left\{1\right\}\)
e) Để ......
\(\left\{{}\begin{matrix}x+2\ge0\\3-2x\ge0\\\left|x\right|-1\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge-2\\x\le\\\left\{{}\begin{matrix}x\ne1\\x\ne-1\end{matrix}\right.\end{matrix}\right.\frac{3}{2}\)
Vậy để btxđ khi ....
a.
Miền xác định của hàm số là miền đối xứng: \(D=R\backslash\left\{0\right\}\)
\(f\left(-x\right)=\frac{\left|6-\left(-2x\right)\right|-\left|6+\left(-2x\right)\right|}{\left(-x\right)^2}=-\frac{\left|6-2x\right|-\left|6+2x\right|}{x^2}=-f\left(x\right)\)
Hàm lẻ
b.
ĐKXĐ: \(\left\{{}\begin{matrix}6-3x\ge0\\x\ne0\\x+1>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\le2\\x\ne0\\x>-1\end{matrix}\right.\)
\(D=\left(-1;0\right)\cup(0;2]\)
ĐKXĐ: \(\left\{{}\begin{matrix}2x-1\ge0\\1-x>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge\frac{1}{2}\\x< 1\end{matrix}\right.\)
\(\Rightarrow\frac{1}{2}\le x< 1\)